1.設(shè)變量x,y滿足約束條件$\left\{\begin{array}{l}{x-y≥0}\\{x+y≤a}\\{y≥0}\end{array}\right.$,若目標(biāo)函數(shù)z=2x+y的最大值為4,則實數(shù)a=( 。
A.2B.3C.-2D.-3

分析 作出可行域,變形目標(biāo)函數(shù)并平移直線y=-2x,作出最優(yōu)解,代入方程求解a可得結(jié)論.

解答 解:作出約束條件$\left\{\begin{array}{l}{x-y≥0}\\{x+y≤a}\\{y≥0}\end{array}\right.$,所對應(yīng)的可行域(如圖陰影三角形),
目標(biāo)函數(shù)z=2x+y可化為y=-2x+z,平移直線y=-2x可知,
當(dāng)直線經(jīng)過點A(2,0)時,
截距z取最大值,
∴(2,0)在直線x+y=a上,解得a=2,
故選:A.

點評 本題考查簡單線性規(guī)劃,準(zhǔn)確作圖是解決問題的關(guān)鍵,屬中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知拋物線C:y2=8x,O為坐標(biāo)原點,直線x=m與拋物線C交于A,B兩點,若△OAB的重心為拋物線C的焦點 F,則|AF|=5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.直線l過拋物線C:y2=2px(p>0)的焦點F,與拋物線C交于A、B兩點,與其準(zhǔn)線交于點D,若|AF|=6,$\overrightarrow{DB}=2\overrightarrow{BF}$,則p=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知邊長為2的正方形ABCD的四個頂點在球O的球面上,球O的體積為V=$\frac{160\sqrt{5}π}{3}$,則OA與平面ABCD所成的角的余弦值為$\frac{\sqrt{10}}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,三棱柱ABC-DEF中,側(cè)面ABED是邊長為2的菱形,且∠ABE=$\frac{π}{3}$,BC=$\frac{\sqrt{21}}{2}$,四棱錐F-ABED的體積為2,點F在平面ABED內(nèi)的正投影為G,且G在AE上,點M是在線段CF上,且CM=$\frac{1}{4}$CF.
(Ⅰ)證明:直線GM∥平面DEF;
(Ⅱ)求二面角M-AB-F的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知數(shù)列{an}滿足an+2=$\left\{\begin{array}{l}{{a}_{n}+2,n為奇數(shù)}\\{2{a}_{n},n為偶數(shù)}\end{array}\right.$,n∈N*,且a1=1,a2=2.
(1)求數(shù)列{an}的通項公式;
(2)令bn=(-1)nanan+1,n∈N*,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若x,y滿足約束條件$\left\{\begin{array}{l}{x+y≤0}\\{x-y≤0}\\{{x}^{2}+{y}^{2}≤4}\end{array}\right.$,則z=$\frac{y-2}{x+3}$的最小值為(  )
A.-2B.-$\frac{2}{3}$C.-$\frac{12}{5}$D.$\frac{\sqrt{2}-4}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.定義:若存在實數(shù)x1∈[-2,-1],x2∈[a,32]使2${\;}^{-{x}_{1}}$=log2x2成立,則稱a為指對實數(shù),那么在a∈[-20,20]上成為指對實數(shù)的概率是$\frac{9}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知向量$\overrightarrow{a}$=(sinx,mcosx),$\overrightarrow$=(3,-1).
(1)若$\overrightarrow{a}$∥$\overrightarrow$,且m=1,求2sin2x-3cos2x的值;
(2)若函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$的圖象關(guān)于直線x=$\frac{2π}{3}$對稱,求函數(shù)f(2x)在[$\frac{π}{8}$,$\frac{2π}{3}$]上的值域.

查看答案和解析>>

同步練習(xí)冊答案