8.${x^2}•{(\frac{1}{x^2}-1)^5}$的展開(kāi)式的常數(shù)項(xiàng)為5(用數(shù)字作答)

分析 利用通項(xiàng)公式即可得出.

解答 解:$(\frac{1}{{x}^{2}}-1)^{5}$的通項(xiàng)公式:Tr+1=${∁}_{5}^{r}$$(\frac{1}{{x}^{2}})^{5-r}(-1)^{r}$=(-1)r${∁}_{5}^{r}$x2r-10,
令2r-10=-2,解得r=4.
∴常數(shù)項(xiàng)=$(-1)^{4}{∁}_{5}^{4}$=5.
故答案為:5.

點(diǎn)評(píng) 本題考查了二項(xiàng)式定理的應(yīng)用,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.若對(duì)于任意的實(shí)數(shù)$x∈({0,\frac{1}{2}}]$,都有2-2x-logax<0恒成立,則實(shí)數(shù)a的取值范圍是$\frac{1}{4}$<a<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知函數(shù)f(x)=4cosxsin(x+$\frac{π}{6}$)+m(m∈R),當(dāng)x∈[0,$\frac{π}{2}$]時(shí),f(x)的最小值為-1.
(Ⅰ)求m的值;
(Ⅱ)在△ABC中,已知f(C)=1,AC=4,延長(zhǎng)AB至D,使BC=BD,且AD=5,求△ACD的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知函數(shù)$f(x)=\left\{{\begin{array}{l}{{e^x},x≥-1}\\{ln(-x),x<-1}\end{array}}\right.$,則“x=0”是“f(x)=1”的(  )
A.充要條件B.充分不必要條件
C.必要不充分條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知集合$M=\{x|y=\sqrt{-{x^2}+2x+8}\}$,集合N={y|y=|x|+1},則M∩N=( 。
A.{x|-2≤x≤4}B.{x|x≥1}C.{x|1≤x≤4}D.{x|x≥-2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知向量$\overrightarrow m=(2coswx,-1),\overrightarrow n=(\sqrt{3}sinwx+coswx,2)$,函數(shù)$f(x)=\overrightarrow m•\overrightarrow n+1$,若函數(shù)f(x)圖象的兩個(gè)相鄰的對(duì)稱(chēng)軸間的距離為$\frac{π}{2}$.
(1)求函數(shù)f(x)的單調(diào)增區(qū)間;
(2)在△ABC中,角A,B,C所對(duì)的邊分別是a,b,c,若△ABC滿足f(A)=1,a=3,BC邊上的中線長(zhǎng)為3,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.某三棱錐的三視圖如圖所示,其中三個(gè)視圖都是直角三角形,則該三棱錐的體積為( 。
A.$\frac{1}{3}$B.$\frac{2}{3}$C.1D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.正方體的內(nèi)切球和外接球的表面積之比為( 。
A.1:2B.1:3C.1:4D.2:3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知雙曲線 C1:$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1( a>0,b>0),圓 C2:x2+y2-2ax+$\frac{3}{4}$a2=0,若雙曲線C1 的一條漸近線與圓 C2 有兩個(gè)不同的交點(diǎn),則雙曲線 C1 的離心率的范圍是(  )
A.(1,$\frac{{2\sqrt{3}}}{3}$)B.($\frac{{2\sqrt{3}}}{3}$,+∞)C.(1,2)D.(2,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案