9.在△ABC中,角A、B、C所對(duì)的邊分別為a,b,c,已知(2c-a)cosB=bcosA.
(1)求角B;
(2)若b=6,c=2a,求△ABC的面積.

分析 (1)利用正弦定理以及兩角和與差的三角函數(shù)化簡(jiǎn)求解即可.
(2)利用余弦定理集合以下條件求出3邊的長(zhǎng)度,然后求解三角形的面積.

解答 解:(1)由(2c-a)cosB=bcosA,得(2sinC-sinA)cosB=sinBcosA,
即2sinCcosB=sinAcosB+sinBcosA,即2sinCcosB=sin(A+B),即2sinCcosB=sinC.
因?yàn)閟inC≠0,所以$cosB=\frac{1}{2}$,而0<B<π,所以$B=\frac{π}{3}$.
(2)由b=6,$B=\frac{π}{3}$,得a2+c2-ac=36.
又因?yàn)閏=2a,所以a2+4a2-2a2=36,即$a=2\sqrt{3}$,則$c=4\sqrt{3}$.
于是${S_{△ABC}}=\frac{1}{2}acsinB=\frac{1}{2}×2\sqrt{3}×4\sqrt{3}×\frac{{\sqrt{3}}}{2}=6\sqrt{3}$.

點(diǎn)評(píng) 本題考查正弦定理以及余弦定理的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知函數(shù)f(x)=|2x-1|,x∈R.
(1)解不等式f(x)≥2-|x+1|;
(2)若對(duì)于x,y∈R,有$|{x-y-1}|≤\frac{1}{3}$,$|{2y+1}|≤\frac{1}{6}$,求證:f(x)<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.在△ABC中,角A、B、C的對(duì)邊分別為a,b,c,則“a=2bcosC”是“△ABC是等腰三角形”的( 。
A.必要不充分條件B.充分不必要條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.一個(gè)幾何體的三視圖如圖所示,則該幾何體的表面積為( 。
A.24+πB.24-3πC.24-πD.24-2π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知函數(shù)f(x)=log2(x2-2ax+3).
(1)若a=1,求f(x)的值域;
(2)若a=2,求函數(shù)f(x)的定義域及單調(diào)區(qū)間;
(3)若函數(shù)f(x)的定義域?yàn)镽,求實(shí)數(shù)a的取值范圍;
(4)若函數(shù)f(x)的值域?yàn)镽,求實(shí)數(shù)a的取值范圍;
(5)若函數(shù)f(x)在[2,+∞)上單調(diào)遞增,求實(shí)數(shù)a的取值范圍;
(6)若函數(shù)f(x)在[-1,+∞)上有意義,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.某校高二2班學(xué)生每周用于數(shù)學(xué)學(xué)習(xí)的時(shí)間x(單位:h)與數(shù)學(xué)成績(jī)y(單位:分)之間有如表數(shù)據(jù):
x24152319161120161713
y92799789644783687159
(Ⅰ)求線性回歸方程;
(Ⅱ)該班某同學(xué)每周用于數(shù)學(xué)學(xué)習(xí)的時(shí)間為18小時(shí),試預(yù)測(cè)該生數(shù)學(xué)成績(jī).
參考數(shù)據(jù):$\overline x=17.4$,$\overline y=74.9$,$\sum_{i=1}^{10}{{x_i}^2=3182}$,$\sum_{i=1}^{10}{{y_i}^2=58375}$,$\sum_{i=1}^{10}{{x_i}{y_i}=13578}$
回歸直線方程參考公式:$\widehatb=\frac{{\sum_{i=1}^n{{x_i}{y_i}}-n\overline x\overline y}}{{\sum_{i=1}^n{x_i^2}-n{{\overline x}^2}}}$,$\widehata=\overline y-\widehatb\overline x$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow$=(-2,-4),|$\overrightarrow{c}$|=$\sqrt{5}$,若($\overrightarrow{c}$-$\overrightarrow$)•$\overrightarrow{a}$=$\frac{15}{2}$,則$\overrightarrow{a}$與$\overrightarrow{c}$的夾角為$\frac{2π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.直線y=kx+1與曲線y=x3+ax+b相切于點(diǎn)A(1,2),則b-a=5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.若函數(shù)f(x)=asinx+3cosx的最大值為5,則常數(shù)a=±4.

查看答案和解析>>

同步練習(xí)冊(cè)答案