分析 討論雙曲線的焦點在x或y軸上,求得漸近線方程,可得b=2a或a=2b,由a,b,c的關系和離心率公式計算即可得到所求值.
解答 解:當雙曲線的焦點在x軸上,
由雙曲線的方程$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}=1$(a,b>0),
可得漸近線方程為y=±$\frac{a}$x,
即有b=$\sqrt{2}$a,c=$\sqrt{{a}^{2}+^{2}}$=$\sqrt{3}$a,
則e=$\frac{c}{a}$=$\sqrt{3}$;
當雙曲線的焦點在y軸上,
由雙曲線的方程$\frac{{y}^{2}}{{a}^{2}}-\frac{{x}^{2}}{^{2}}=1$(a,b>0),
可得漸近線方程為y=±$\frac{a}$x,
即有b=$\frac{\sqrt{2}}{2}$a,c=$\sqrt{{a}^{2}+^{2}}$=$\frac{\sqrt{6}}{2}$a,
則e=$\frac{c}{a}$=$\frac{\sqrt{6}}{2}$.
故答案為:$\frac{{\sqrt{6}}}{2}$或$\sqrt{3}$;
點評 本題考查雙曲線的離心率的求法,注意討論焦點的位置,考查漸近線方程與雙曲線的方程的關系,考查運算能力,屬于基礎題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | [-24,0) | B. | (-∞,-24)∪[0,2) | C. | (-24,3) | D. | (-∞,-24]∪[0,2] |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | (-∞,0) | B. | (-∞,2) | C. | (2,+∞) | D. | (0,+∞) |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | 1 | C. | $\frac{\sqrt{2}}{2}$ | D. | 2 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com