9.在三棱錐P-ABC中,PA⊥平面ABC,AB=AC=2,BC=2$\sqrt{3}$,M,N分別為BC,AB中點(diǎn).
(I)求證:MN∥平面PAC
(II)求證:平面PBC⊥平面PAM
(III)在AC上是否存在點(diǎn)E,使得ME⊥平面PAC,若存在,求出ME的長(zhǎng),若不存在,請(qǐng)說明理由.

分析 (I)利用M,N分別為BC,AB中點(diǎn),得MN∥AC,即可證明:MN∥平面PAC
(II)證明BC⊥平面PAM,即可證明:平面PBC⊥平面PAM
(III)過點(diǎn)M作ME⊥AC,交AC于點(diǎn)E,可得ME⊥平面PAC.

解答 (I)證明:因?yàn)镸,N分別為BC,AB中點(diǎn),
所以MN∥AC.
因?yàn)镸N?平面PAC,AC?平面PAC,
所以MN∥平面PAC.…(4分)
(II)證明:因?yàn)镻A⊥平面ABC,BC?平面ABC,
所以PA⊥BC.
因?yàn)锳B=AC=2,M為BC的中點(diǎn),
所以AM⊥BC.
因?yàn)锳M∩PA=A,
所以BC⊥平面PAM.
因?yàn)锽C?平面PBC,
所以平面PBC⊥平面PAM.…(8分)
(III)解:存在.
過點(diǎn)M作ME⊥AC,交AC于點(diǎn)E,
因?yàn)镻A⊥平面ABC,BC?平面ABC,
所以PA⊥ME.
因?yàn)镸E⊥AC,AC∩PA=A,
所以ME⊥平面PAC.
因?yàn)樵凇鰽BC中,AB=AC=2,BC=2$\sqrt{3}$,M為BC的中點(diǎn),
所以ME=$\frac{\sqrt{3}}{2}$.…(13分)

點(diǎn)評(píng) 本題考查線面平行、垂直的判定,考查面面垂直的證明,考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.設(shè)函數(shù)f(x)=(x-1)ex+ax2,a∈R.
(Ⅰ)當(dāng)a=1時(shí),求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)若函數(shù)f(x)有兩個(gè)零點(diǎn),試求a的取值范圍;
( III)設(shè)函數(shù)g(x)=lnx+x-ex+1,當(dāng)a=0時(shí),證明f(x)-g(x)≥0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.執(zhí)行如圖所示的程序框圖,若輸入的x值為1,則輸出的k值為( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.下列四個(gè)函數(shù)中,在其定義域上既是奇函數(shù)又是單調(diào)遞增函數(shù)的是(  )
A.y=exB.y=log2xC.y=sinxD.y=x3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.${e^{-2}},{2^{\frac{1}{e}}},ln2$三個(gè)數(shù)中最大的數(shù)是${2^{\frac{1}{e}}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知向量$\overrightarrow{a}$,$\overrightarrow$滿足$\overrightarrow{a}-2\overrightarrow$=0,($\overrightarrow{a}-\overrightarrow$)•$\overrightarrow$=2,則|$\overrightarrow$|=( 。
A.$\frac{1}{2}$B.1C.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知A、B兩所大學(xué)的專業(yè)設(shè)置都相同(專業(yè)數(shù)均不小于2),數(shù)據(jù)顯示,A大學(xué)的各專業(yè)的男女生比例均高于B大學(xué)的相應(yīng)專業(yè)的男女生比例(男女生比例是指男生人數(shù)與女生人數(shù)的比). 據(jù)此,
甲同學(xué)說:“A大學(xué)的男女生比例一定高于B大學(xué)的男女生比例”;
乙同學(xué)說:“A大學(xué)的男女生比例不一定高于B大學(xué)的男女生比例”;
丙同學(xué)說:“兩所大學(xué)的全體學(xué)生的男女生比例一定高于B大學(xué)的男女生比例”.
其中,說法正確的同學(xué)是乙.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.若函數(shù)$f(x)=sin(ωπx-\frac{π}{6})(ω>0)$的最小正周期為$\frac{1}{5}$,則$f(\frac{1}{3})$的值為-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.過點(diǎn)(2,1)且與點(diǎn)(1,3)距離最大的直線方程是x-2y=0.

查看答案和解析>>

同步練習(xí)冊(cè)答案