19.過點(2,1)且與點(1,3)距離最大的直線方程是x-2y=0.

分析 過點A(2,1)且與點B(1,3)距離最大的直線l滿足:l⊥AB.則kl•kAB=-1,即可得出.

解答 解:過點A(2,1)且與點B(1,3)距離最大的直線l滿足:l⊥AB.
∴kl•kAB=-1,
∴kl=$\frac{1}{2}$.
∴直線l的方程 為:y-1=$\frac{1}{2}$(x-2),化為x-2y=0.
故答案為:x-2y=0.

點評 本題考查了相互垂直的直線斜率之間的關(guān)系、點斜式,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在三棱錐P-ABC中,PA⊥平面ABC,AB=AC=2,BC=2$\sqrt{3}$,M,N分別為BC,AB中點.
(I)求證:MN∥平面PAC
(II)求證:平面PBC⊥平面PAM
(III)在AC上是否存在點E,使得ME⊥平面PAC,若存在,求出ME的長,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知矩陣A=$[\begin{array}{l}{1}&{a}\\{-1}&\end{array}]$的一個特征值為2,其對應(yīng)的一個特征向量為a=$[\begin{array}{l}{2}\\{1}\end{array}]$,求實數(shù)a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知集合A={x|0<x<2},B={x|x2-1>0},那么A∩B=( 。
A.{x|0<x<1}B.{x|1<x<2}C.{x|-1<x<0}D.{x|-1<x<2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.設(shè)集合A={x|x>0},B={x|-1<x≤2},則A∩B={x|0<x≤2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.命題p:f(x)=x3+ax2+ax在R上的單調(diào)遞增函數(shù),命題q:方程$\frac{{x}^{2}}{a+2}$+$\frac{{y}^{2}}{a-2}$=1表示雙曲線.
(1)當(dāng)a=1時,判斷命題p的真假,并說明理由;
(2)若命題“p且q“為真命題,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若a=20.6,b=lg0.6,c=lg0.4,則(  )
A.a<c<bB.a<b<cC.c<b<aD.b<c<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若橢圓$\frac{{x}^{2}}{5}$+y2=1的左、右焦點恰好是雙曲線$\frac{{x}^{2}}{{a}^{2}}$-y2=1的左、右頂點,則雙曲線的離心率為(  )
A.$\sqrt{6}$B.$\sqrt{5}$C.$\frac{\sqrt{6}}{2}$D.$\frac{\sqrt{5}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.設(shè)等比數(shù)列{an}的首項為a1,公比為q(q>0),所有項和為1,則首項a1的取值范圍是(0,1).

查看答案和解析>>

同步練習(xí)冊答案