8.已知α是第二象限角,那么$\frac{α}{2}$是( 。
A.第一象限角B.第二象限角
C.第一或第二象限角D.第一或第三象限角

分析 寫(xiě)出終邊相同的角的集合,然后求出$\frac{α}{2}$所在象限即可.

解答 解:∵α是第二象限角,
∴$\frac{π}{2}$+2kπ<α<π+2kπ,k∈Z,
∴$\frac{π}{4}$+kπ<$\frac{α}{2}$<$\frac{π}{2}$+kπ,k∈Z,
當(dāng)k為偶數(shù)時(shí),$\frac{α}{2}$是第一象限角,k為奇數(shù)時(shí),$\frac{α}{2}$是第三象限角,
∴$\frac{α}{2}$是第一或第三象限角.
故選:D.

點(diǎn)評(píng) 本題考查象限角、軸線角,注意k為奇數(shù)、偶數(shù)的情況,由此可以確定α在其它象限的情況,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知函數(shù)$f(x)=asin(2x-\frac{π}{3})+b,(a>0)$的最大值為1,最小值為-5;
(Ⅰ)求a,b的值
(Ⅱ)求$g(x)=bcos(ax+\frac{π}{6})$的最大值及x的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知曲線C:$y=\frac{1}{3}{x^3}-{x^2}-4x+1$,直線l:x+y+2k-1=0,當(dāng)x∈[-3,3]時(shí),直線l恒在曲線C的上方,則實(shí)數(shù)k的取值范圍是( 。
A.$k>-\frac{5}{6}$B.$k<-\frac{5}{6}$C.$k<-\frac{3}{4}$D.$k>-\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.(1)已知$cosα=-\frac{4}{5}$,且α為第三象限角,求sinα的值;
(2)已知tanα=-3,計(jì)算$\frac{4sinα-2cosα}{5cosα+3sinα}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知兩個(gè)等差數(shù)列{an}和{bn}的前n項(xiàng)和分別為An和Bn,且$\frac{A_n}{B_n}=\frac{7n+57}{n+3}$,則使得$\frac{a_n}{b_n}$為整數(shù)的正整數(shù)n的個(gè)數(shù)是( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知函數(shù)f(x)=cosx,若存在實(shí)數(shù)x1,x2,…,xm(m≥2,m∈N)滿足條件0≤x1<x2<…<xm≤6π,且|f(x1)-f(x2)|+…+|f(xm-1)-f(xm)|=12,則m的最小值為(  )
A.6B.7C.8D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.如圖,給出的是計(jì)算$\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\frac{1}{8}+…+\frac{1}{22}$的一個(gè)程序框圖,其中判斷框內(nèi)應(yīng)填入的條件是( 。
A.i<11B.i>11C.i<22D.i>22

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.求證:$\sqrt{3}$+$\sqrt{5}$>$\sqrt{2}$+$\sqrt{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.如果數(shù)據(jù)x1,x2,…,xn的平均數(shù)為5,方差為2,記數(shù)據(jù)7x1-2,7x2-2,7x3-2,…,7xn-2的平均數(shù)為$\overline{x}$,方差為S2,則$\overline{x}$+S2=131.

查看答案和解析>>

同步練習(xí)冊(cè)答案