4.已知函數(shù)f(x)=$\left\{\begin{array}{l}-{2^x},x<2\\{log_3}({x^2}-1),x≥2\end{array}$,若f(a)=1,則a的值為2.

分析 根據(jù)題意,由函數(shù)的解析式分2種情況討論:①、若a<2,則有$\left\{\begin{array}{l}{-{2}^{a}=1}\\{a<2}\end{array}\right.$,②、若a≥2,則有$\left\{\begin{array}{l}{lo{g}_{3}({a}^{2}-1)=1}\\{a≥2}\end{array}\right.$,分別求出a的值,綜合可得答案.

解答 解:根據(jù)題意,函數(shù)f(x)=$\left\{\begin{array}{l}-{2^x},x<2\\{log_3}({x^2}-1),x≥2\end{array}$,
若f(a)=1,
分2種情況討論:
①、若x<2,則有$\left\{\begin{array}{l}{-{2}^{a}=1}\\{a<2}\end{array}\right.$,
此時無解;
②、若a≥2,則有$\left\{\begin{array}{l}{lo{g}_{3}({a}^{2}-1)=1}\\{a≥2}\end{array}\right.$,
解可得a=2,
綜合可得a=2;
故答案為:2.

點評 本題考查函數(shù)的值,涉及分段函數(shù)的求值問題,注意分段求值,需要分段討論.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

14.已知函數(shù)f(x)滿足xf′(x)-f(x)=xex且f(-1)=$\frac{1}{e}$,則x<0時f(x)=( 。
A.既有極大值又有極小值B.有極大值無極小值
C.既無極大值又無極小值D.有極小值無極大值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.曲線y=3lnx+x+2在點p0處的切線與直線x+4y-8=0垂直,則點p0的坐標是( 。
A.(0,1)B.(1,0)C.(1,-1)D.(1,3)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.某三棱錐的三視圖如圖所示,已知該三棱錐的外接球的表面積為12π,則此三棱錐的體積為( 。
A.4B.$\frac{4}{3}$C.$\frac{8}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.第96屆(春季)全國糖酒商品交易會于2017年3月23日至25日在四川舉辦.交易會開始前,展館附近一家川菜特色餐廳為了研究參會人數(shù)與餐廳所需原材料數(shù)量的關(guān)系,查閱了最近5次交易會的參會人數(shù)x(萬人)與餐廳所用原材料數(shù)量t(袋),得到如下數(shù)據(jù):
第一次第二次第三次第四次第五次
參會人數(shù)x(萬人)11981012
原材料t(袋)2823202529
(Ⅰ)請根據(jù)所給五組數(shù)據(jù),求出t關(guān)于x的線性回歸方程$\hat t=\hat bx+\hat a$;
(Ⅱ)已知購買原材料的費用C(元)與數(shù)量t(袋)的關(guān)系為$C=\left\{\begin{array}{l}300t+20,({0<t<35,t∈N})\\ 290t,({t≥35,t∈N})\end{array}\right.$投入使用的每袋原材料相應(yīng)的銷售收入為600元,多余的原材料只能無償返還.若餐廳原材料現(xiàn)恰好用完,據(jù)悉本次交易會大約有14萬人參加,根據(jù)(Ⅰ)中求出的線性回歸方程,預(yù)測餐廳應(yīng)購買多少袋原材料,才能獲得最大利潤,最大利潤是多少?(注:利潤L=銷售收入-原材料費用).
(參考公式:$\hat b=\frac{{\sum_{i=1}^n{({{x_i}-\overline x})({{y_i}-\overline y})}}}{{\sum_{i=1}^n{{{({{x_i}-\overline x})}^2}}}}$=$\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}$,$\hat a=\overline y-\hat b\overline x$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知右焦點為F的橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)過點M(1,$\frac{3}{2}$),直線x=a與拋物線L:x2=$\frac{8}{3}$y交于點N,且$\overrightarrow{OM}$=$\overrightarrow{FN}$,其中O為坐標原點.
(1)求橢圓C的方程;
(2)直線l與橢圓C交于A、B兩點.
①若直線l與x軸垂直,過點P(4,0)的直線PB交橢圓C于另一點E,證明直線AE與x軸相交于定點;
②已知D為橢圓C的左頂點,若l與直線DM平行,判斷直線MA,MB是否關(guān)于直線FM對稱,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.2016年二十國集團領(lǐng)導(dǎo)人峰會(簡稱“G20峰會”)于9月4日至5日在浙江杭州召開,為保證會議期間交通暢通,杭州市已發(fā)布9月1日至7日為“G20峰會”調(diào)休期間.據(jù)報道對于杭州市民:浙江省旅游局聯(lián)合11個市開展一系列旅游惠民活動,活動內(nèi)容為:“本省游”、“黃山游”、“黔東南游”,某旅游公司為了解群眾出游情況,擬采用分層抽樣的方法從有意愿“本省游”、“黃山游”、“黔東南游”這三個區(qū)域旅游的群眾中抽取7人進行某項調(diào)查,已知有意愿參加“本省游”、“黃山游”、“黔東南游”的群眾分別有360,540,360人.
(1)求從“本省游”、“黃山游”、“黔東南游”,三個區(qū)域旅游的群眾分別抽取的人數(shù);
(2)若從抽得的7人中隨機抽取2人進行調(diào)查,用列舉法計算這2人中至少有1人有意愿參加“本省游”的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.某密碼鎖共設(shè)四個數(shù)位,每個數(shù)位的數(shù)字都可以是1,2,3,4中的任一個.現(xiàn)密碼破譯者得知:甲所設(shè)的四個數(shù)字有且僅有三個相同;乙所設(shè)的四個數(shù)字有兩個相同,另兩個也相同;丙所設(shè)的四個數(shù)字有且僅有兩個相同;丁所設(shè)的四個數(shù)字互不相同.則上述四人所設(shè)密碼最安全的是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.設(shè)函數(shù)f(x)=ax3+x2+bx+1在x=1和x=2處都有極值,求a,b,并求出此函數(shù)的極值.

查看答案和解析>>

同步練習冊答案