4.已知向量$\vec a,\vec b,\vec c$是空間的一個單位正交基底,向量$\vec a+\vec b,\vec a-\vec b,\vec c$是空間的另一個基底.若向量$\vec m$在基底$\vec a,\vec b,\vec c$下的坐標(biāo)為(1,2,3),則$\vec m$在基底$\vec a+\vec b,\vec a-\vec b,\vec c$下的坐標(biāo)為($\frac{3}{2}$,-$\frac{1}{2}$,3).

分析 設(shè)$\overrightarrow{m}$=x($\overrightarrow{a}$+$\overrightarrow$)+y($\overrightarrow{a}$-$\overrightarrow$)+z$\overrightarrow{c}$,根據(jù)空間向量基本定理即可建立關(guān)于x,y,z的方程,解方程即得x,y,z

解答 解:設(shè)$\overrightarrow{m}$=x($\overrightarrow{a}$+$\overrightarrow$)+y($\overrightarrow{a}$-$\overrightarrow$)+z$\overrightarrow{c}$=(x+y)$\overrightarrow{a}$+(x-y)$\overrightarrow$+z$\overrightarrow{c}$=$\overrightarrow{a}$+2$\overrightarrow$+3$\overrightarrow{c}$,
∴$\left\{\begin{array}{l}{x+y=1}\\{x-y=2}\\{z=3}\end{array}\right.$,解得x=$\frac{3}{2}$,y=-$\frac{1}{2}$,z=3,
∴$\vec m$在基底$\vec a+\vec b,\vec a-\vec b,\vec c$下的坐標(biāo)為($\frac{3}{2}$,-$\frac{1}{2}$,3)
故答案為:$(\frac{3}{2},-\frac{1}{2},3)$

點(diǎn)評 考查基底的概念,空間向量坐標(biāo)的概念,以空間向量基本定理.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.設(shè)f(x)=2|x|-|x+3|.
(1)求函數(shù)y=f(x)的最小值;
(2)求不等式f(x)≤7的解集S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.以下說法錯誤的是( 。
A.推理一般分為合情推理和演繹推理
B.歸納是從特殊到一般的過程,它屬于合情推理
C.在數(shù)學(xué)中,證明命題的正確性既能用演繹推理又能用合情推理
D.演繹推理經(jīng)常使用的是由大前提、小前提得到結(jié)論的三段論推理

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.閱讀材料:根據(jù)兩角和與差的正弦公式,有:
sin(α+β)=sinαcosβ+cosαsinβ------①
sin(α-β)=sinαcosβ-cosαsinβ------②
由①+②得sin(α+β)+sin(α-β)=2sinαcosβ------③
令α+β=A,α-β=β 有α=$\frac{A+B}{2}$,β=$\frac{A-B}{2}$代入③得 sinA+sinB=2sin$\frac{A+B}{2}$cos$\frac{A-B}{2}$.
(1)利用上述結(jié)論,試求sin15°+sin75°的值;
(2)類比上述推證方法,根據(jù)兩角和與差的余弦公式,證明:cosA-cosB=-2sin$\frac{A+B}{2}$cos$\frac{A-B}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知數(shù)列{an}為等差數(shù)列,滿足$\overrightarrow{OA}={a_3}\overrightarrow{OB}+{a_{2016}}\overrightarrow{OC}$,其中A,B,C在一條直線上,O為直線AB外一點(diǎn),記數(shù)列{an}的前n項和為Sn,則S2018的值為( 。
A.$\frac{2017}{2}$B.2017C.$\frac{2018}{2}$D.2018

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知函數(shù)f(x)在R上可導(dǎo),且f(x)=2x+f'(0)•(x2-1),則f(0)的值為(  )
A.ln2B.0C.1D.1-ln2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.綜合應(yīng)用拋物線和雙曲線的光學(xué)性質(zhì),可以設(shè)計制造反射式天文望遠(yuǎn)鏡.這種望遠(yuǎn)鏡的特點(diǎn)是,鏡筒可以很短而觀察天體運(yùn)動又很清楚,例如,某天文儀器廠設(shè)計制造的一種反射式望遠(yuǎn)鏡,其光學(xué)系統(tǒng)的原理如圖1(中心截口示意圖)所示,其中,一個反射鏡PO1Q弧所在的曲線為拋物線,另一個反射鏡MO2N弧所在的曲線為雙曲線的一個分支,已知F1、F2是雙曲線的兩個焦點(diǎn),其中F2同時又是拋物線的焦點(diǎn),O1也是雙曲線的左頂點(diǎn).若在如圖2所示的坐標(biāo)系下,MO2N弧所在的曲線方程為標(biāo)準(zhǔn)方程,試根據(jù)圖示尺寸(單位:cm),寫出反射鏡PO1Q弧所在的拋物線方程為y2=920(x+88).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.拋物線x=$\frac{1}{4}$y2的焦點(diǎn)坐標(biāo)為(1,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知A,B分別為雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點(diǎn),不同兩點(diǎn)P,Q在雙曲線C上,且關(guān)于x軸對稱,設(shè)直線AP,BQ的斜率分別為λ,μ,則當(dāng)$\frac{16}{λμ}$+λμ取最大值時,雙曲線C的離心率為( 。
A.$\sqrt{5}$B.$\sqrt{3}$C.$\sqrt{2}$D.2$\sqrt{2}$

查看答案和解析>>

同步練習(xí)冊答案