16.綜合應(yīng)用拋物線和雙曲線的光學(xué)性質(zhì),可以設(shè)計(jì)制造反射式天文望遠(yuǎn)鏡.這種望遠(yuǎn)鏡的特點(diǎn)是,鏡筒可以很短而觀察天體運(yùn)動(dòng)又很清楚,例如,某天文儀器廠設(shè)計(jì)制造的一種反射式望遠(yuǎn)鏡,其光學(xué)系統(tǒng)的原理如圖1(中心截口示意圖)所示,其中,一個(gè)反射鏡PO1Q弧所在的曲線為拋物線,另一個(gè)反射鏡MO2N弧所在的曲線為雙曲線的一個(gè)分支,已知F1、F2是雙曲線的兩個(gè)焦點(diǎn),其中F2同時(shí)又是拋物線的焦點(diǎn),O1也是雙曲線的左頂點(diǎn).若在如圖2所示的坐標(biāo)系下,MO2N弧所在的曲線方程為標(biāo)準(zhǔn)方程,試根據(jù)圖示尺寸(單位:cm),寫出反射鏡PO1Q弧所在的拋物線方程為y2=920(x+88).

分析 根據(jù)題意,對(duì)于雙曲線,有$\left\{\begin{array}{l}{c-a=54}\\{2a=176}\end{array}\right.$,求出a,b,c可得雙曲線的方程;求出拋物線的頂點(diǎn)的橫坐標(biāo),可得拋物線的方程.

解答 解:對(duì)于雙曲線,有$\left\{\begin{array}{l}{c-a=54}\\{2a=176}\end{array}\right.$,∴a=88,c=142,
由題意,$\frac{p}{2}$=142+88=230
∵拋物線的頂點(diǎn)的橫坐標(biāo)是-88,
∴拋物線的方程為y2=920(x+88).
故答案為y2=920(x+88).

點(diǎn)評(píng) 本題考查利用數(shù)學(xué)知識(shí)解決實(shí)際問題,考查雙曲線、拋物線的性質(zhì),屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知函數(shù)f(x)=(x3+2x2+ax-a)ex,f′(x)為f(x)的導(dǎo)函數(shù),則f′(0)的值為(  )
A.0B.1C.-aD.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.不等式$\frac{3x+1}{2x-1}<2$的解集是{x|x>3或x<$\frac{1}{2}$}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知向量$\vec a,\vec b,\vec c$是空間的一個(gè)單位正交基底,向量$\vec a+\vec b,\vec a-\vec b,\vec c$是空間的另一個(gè)基底.若向量$\vec m$在基底$\vec a,\vec b,\vec c$下的坐標(biāo)為(1,2,3),則$\vec m$在基底$\vec a+\vec b,\vec a-\vec b,\vec c$下的坐標(biāo)為($\frac{3}{2}$,-$\frac{1}{2}$,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1的一條漸近線與拋物線$y=\frac{1}{2}{x^2}+\frac{1}{2}$只有一個(gè)公共點(diǎn),則雙曲線的離心率為(  )
A.$\sqrt{2}$B.5C.2D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=$\frac{1}{3}{x^3}-{x^2}+({1-{m^2}})x({0<m<1})$
(1)求函數(shù)f(x)的極大值點(diǎn)和極小值點(diǎn);
(2)若f(x)恰好有三個(gè)零點(diǎn),求實(shí)數(shù)m取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知橢圓$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{4}$=1以及橢圓內(nèi)一點(diǎn)P(2,1),則以P為中點(diǎn)的弦所在直線斜率為( 。
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.2D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若復(fù)數(shù)z滿足z(4-i)=5+3i(i為虛數(shù)單位),則復(fù)數(shù)z的共軛復(fù)數(shù)為(  )
A.1-iB.-1+iC.1+iD.-1-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)$f(x)=|2x-a|+a,a∈R,g(x)=|2x-1|.
(1)若當(dāng)g(x)≤3時(shí),恒有f(x)≤6,求a的最大值;
(2)若不等式f(x)-g(x)≥3有解,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案