15.在△ABC中,a、b、c分別是角A、B、C的對(duì)邊,若角A、B、C依次成等差數(shù)列,且-x2+5x-4>0的解集為{x|a<x<c},則S△ABC=( 。
A.$\sqrt{3}$B.2$\sqrt{3}$C.3$\sqrt{3}$D.4$\sqrt{3}$

分析 由角A、B、C依次成等差數(shù)列,得B=60°,由-x2+5x-4>0的解集為{x|a<x<c},得a=1,c=4,由此能求出S△ABC

解答 解:∵在△ABC中,a、b、c分別是角A、B、C的對(duì)邊,角A、B、C依次成等差數(shù)列,
∴$\left\{\begin{array}{l}{A+B+C=180°}\\{A+C=2B}\end{array}\right.$,解得B=60°,
∵-x2+5x-4>0的解集為{x|a<x<c},
∴$\left\{\begin{array}{l}{a+c=5}\\{ac=4}\end{array}\right.$,解得a=1,c=4,
∴S△ABC=$\frac{1}{2}acsinB=\frac{1}{2}×4×sin60°$=$\sqrt{3}$.
故選:A.

點(diǎn)評(píng) 本題考查三角形面積的求法,是中檔題,解題時(shí)要認(rèn)真審,注意等差數(shù)列、一元二次不等式、正弦定理的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.下列函數(shù)中,在(-∞,0)內(nèi)為減函數(shù)的是(  )
A.y=3xB.y=x3C.y=2x+1D.y=x2+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)=2alnx-x2+1(a∈R).
(Ⅰ)討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)若a>0,求函數(shù)f(x)在區(qū)間[1,+∞)上的最大值;
(Ⅲ)若f(x)≤0在區(qū)間[1,+∞)上恒成立,求a的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.設(shè)i是虛數(shù)單位,若復(fù)數(shù)$a-\frac{10}{3-i}(a∈R)$是純虛數(shù),則a的值為( 。
A.3B.-1C.-3D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右交點(diǎn)分別為F1,F(xiàn)2,且|F1F2|=4$\sqrt{3}$,A($\sqrt{3}$,-$\frac{\sqrt{13}}{2}$)是橢圓上一點(diǎn).
(1)求橢圓C的標(biāo)準(zhǔn)方程和離心率e的值;
(2)若T為橢圓C上異于頂點(diǎn)的任意一點(diǎn),M,N分別為橢圓的右頂點(diǎn)和上頂點(diǎn),直線TM與y軸交于點(diǎn)P,直線TN與x軸交于點(diǎn)Q,求證:|PN|•|QM|為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的左焦點(diǎn)為F,若F關(guān)于直線$\sqrt{3}x$+y=0的對(duì)稱(chēng)點(diǎn)A是橢圓C上的點(diǎn),則橢圓C的離心率為$\sqrt{3}-1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的離心率為$\frac{{\sqrt{6}}}{3}$,短軸的一個(gè)端點(diǎn)到右焦點(diǎn)的距離是$\sqrt{3}$
(1)求橢圓C的方程;
(2)直線y=x+1交橢圓于A、B兩點(diǎn),P為橢圓上的一點(diǎn),求△PAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.設(shè)函數(shù)$f(x)=\overrightarrow m•\overrightarrow n$,其中$\overrightarrow m=(2cosx,1),\overrightarrow n=(cosx,\sqrt{3}sin2x),x∈R$
(1)求出f(x)的最小正周期和單調(diào)遞減區(qū)間;
(2)求f(x)在[$-\frac{π}{6},\frac{π}{4}]$上最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知實(shí)數(shù)x,y不等式組$\left\{\begin{array}{l}x+y-4≥0\\ x-y+2≥0\\ 5x-3y-12≤0\end{array}\right.$,則z=$\frac{x}{x+y}$的最大值為( 。
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{3}{4}$D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案