14.已知集合M={x|$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1},N={y|$\frac{x}{3}$+$\frac{y}{2}$=1},M∩N=(  )
A.B.{(3,0),(0,2)}C.[一2,2]D.[一3,3]

分析 根據(jù)橢圓的定義得到集合M,根據(jù)直線方程得到集合N,再求交集即可.

解答 解:集合M={x|$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1}=[-3,3],N={y|$\frac{x}{3}$+$\frac{y}{2}$=1}=R,
則M∩N=[-3,3],
故選:D.

點評 此題考查了交集及其運算,熟練掌握交集的定義是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知有下面程序,若程序執(zhí)行后輸出的結(jié)果是11880,則在程序后面的“橫線”處應(yīng)填(  )
A.i≥9B.i=8C.i≥10D.i≥8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.函數(shù)f(x)=|x+2017|-|x-2016|的最大值為( 。
A.-1B.1C.4033D.-4033

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知三棱柱ABC-A1B1C1的六個頂點都在球O的球面上,且側(cè)棱AA1⊥平面ABC,若AB=AC=3,∠BAC=$\frac{2π}{3},A{A_1}$=8,則球的表面積為( 。
A.36πB.64πC.100πD.104π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)i是虛數(shù)單位,$\overline z$是復(fù)數(shù)z的共軛復(fù)數(shù),若$z=\frac{2}{-1+i}$,則$\overline z$=( 。
A.1-iB.1+iC.-1-iD.-1+i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若空間中四個不重合的平面a1,a2,a3,a4滿足a1⊥a2,a2⊥a3,a3⊥a4,則下列結(jié)論一定正確的是( 。
A.a1⊥a4B.a1∥a4
C.a1與a4既不垂直也不平行D.a1與a4的位置關(guān)系不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.F是雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左焦點,過F作某一漸近線的垂線,分別與兩條漸近線相交于A,B兩點,若$\frac{{|{AF}|}}{{|{BF}|}}=\frac{1}{2}$,則雙曲線的離心率為$\frac{2}{3}\sqrt{3}$或2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.如圖,在正方形ABCD中,M,N分別是BC,CD的中點,若$\overrightarrow{AC}=λ\overrightarrow{AM}+μ\overrightarrow{BN}$,則λ+μ的值為( 。
A.$\frac{8}{5}$B.$\frac{5}{8}$C.1D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.將一根長為10米的木棒截成三段,則每段木棒長不低于1米的概率為(  )
A.$\frac{8}{25}$B.$\frac{16}{25}$C.$\frac{49}{100}$D.$\frac{49}{200}$

查看答案和解析>>

同步練習(xí)冊答案