分析 (Ⅰ)若f(2a2-1)>4|a-1|,則|2a2-2a|+|a2-1|>4|a-1|,即2|a|+|a+1|>4,分類討論,即可求實(shí)數(shù)a的取值范圍;
(Ⅱ)若存在實(shí)數(shù)x,y,使f(x)+g(y)≤0,則f(x)≤-g(y),即可求實(shí)數(shù)a的取值范圍.
解答 解:(Ⅰ)若f(2a2-1)>4|a-1|,則|2a2-2a|+|a2-1|>4|a-1|,
∴2|a|+|a+1|>4,
a<-1,則-2a-a-1>4,∴a<-$\frac{5}{3}$,∴a<-$\frac{5}{3}$;
-1≤a≤0,則-2a+a+1>4,∴a<-3,不成立;
a>0,則2a+a+1>4,∴a>1,
綜上所述,a<-$\frac{5}{3}$或a>1;
(Ⅱ)f(x)=|x+1-2a|+|x-a2|≥|1-2a+a2|,g(x)=x2-2x-4+$\frac{4}{(x-1)^{2}}$=(x-1)2+$\frac{4}{(x-1)^{2}}$-5≥-1
若存在實(shí)數(shù)x,y,使f(x)+g(y)≤0,則|1-2a+a2|≤1,∴0≤a≤2.
點(diǎn)評(píng) 本題主要考查絕對(duì)值的含義、不等式的解法,函數(shù)的最值等基礎(chǔ)知識(shí),考查運(yùn)算求解能力以及推理論證能力,考查函數(shù)與方程思想以及分類與整合思想.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | $\frac{{\sqrt{3}}}{2}$ | C. | $\frac{{\sqrt{2}}}{4}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | A∩B=∅ | B. | A∩B=A | C. | A∪B=A | D. | A∪B=R |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{8}$ | B. | $\frac{3}{16}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | y=±x | B. | y=±$\sqrt{2}$x | C. | y=±$\sqrt{3}$x | D. | y=±2x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1-3i | B. | 1+3i | C. | -1+3i | D. | -1-3i |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com