1.如圖所示,是一個(gè)空間幾何體的三視圖,且這個(gè)空間幾何體的所有頂點(diǎn)都在同一個(gè)球面上,則這個(gè)球的體積是( 。
A.$\frac{49}{9}π$B.$\frac{{28\sqrt{21}}}{27}π$C.$\frac{28}{3}π$D.$\frac{{28\sqrt{7}}}{9}π$

分析 由三視圖知,幾何體是一個(gè)三棱柱,三棱柱的底面是邊長(zhǎng)為2的正三角形,側(cè)棱長(zhǎng)是2,根據(jù)三棱柱的兩個(gè)底面的中心的中點(diǎn)與三棱柱的頂點(diǎn)的連線就是外接球的半徑,求出半徑即可求出球的體積.

解答 解:由三視圖知,幾何體是一個(gè)三棱柱,三棱柱的底面是邊長(zhǎng)為2的正三角形,側(cè)棱長(zhǎng)是2,
三棱柱的兩個(gè)底面的中心的中點(diǎn)與三棱柱的頂點(diǎn)的連線就是外接球的半徑,
r=$\sqrt{(\frac{2}{3}×\sqrt{3})^{2}+{1}^{2}}$=$\sqrt{\frac{7}{3}}$,球的體積$\frac{4}{3}$πr3=$\frac{28\sqrt{21}}{27}$π.
故選:B.

點(diǎn)評(píng) 本題考查了由三視圖求三棱柱的外接球的體積,利用棱柱的幾何特征求外接球的半徑是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.曲線y=$\frac{1}{3}$x3-2在點(diǎn)(1,-$\frac{5}{3}$)處切線的斜率是( 。
A.$\sqrt{3}$B.1C.-1D.-$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知函數(shù)f(x)=ex+$\frac{{x}^{2}}{2}$+ln(x+m)+n在點(diǎn)(0,f(0))處的切線方程為(e+1)x-ey+3e=0.
(1)求f(x)的解析式;
(2)若當(dāng)x≥0時(shí),f(x)≥$\frac{{x}^{2}}{2}$+ax+3成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,bcos2$\frac{A}{2}$+acos2$\frac{B}{2}$=$\frac{3}{2}$c.
(1)求證:a,c,b成等差數(shù)列;
(2)若C=$\frac{π}{3}$,△ABC的面積為2$\sqrt{3}$,求c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.關(guān)于函數(shù)f (x)=4sin(2x+$\frac{π}{3}$),(x∈R)有下列命題:
①y=f(x)是以2π為最小正周期的周期函數(shù);
②y=f(x)的圖象關(guān)于點(diǎn)(-$\frac{π}{6}$,0)對(duì)稱(chēng);
③y=f(x)的圖象關(guān)于直線x=-$\frac{5π}{12}$對(duì)稱(chēng);
其中正確的序號(hào)為③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知f(x)=|x+1|+|x-2|
(Ⅰ)已知關(guān)于x的不等式f(x)<2a-1有實(shí)數(shù)解,求實(shí)數(shù)a的取值范圍;
(Ⅱ)解不等式f(x)≥x2-2x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知雙曲線C的焦點(diǎn)、實(shí)軸端點(diǎn)恰好分別是橢圓$\frac{x^2}{16}+\frac{y^2}{7}=1$的長(zhǎng)軸端點(diǎn)、焦點(diǎn),則雙曲線C的漸近線方程是$y=±\frac{{\sqrt{7}}}{3}x$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.將函數(shù)g(x)=sinx的圖象縱坐標(biāo)伸長(zhǎng)為原來(lái)的2倍(橫坐標(biāo)不變),再將橫坐標(biāo)縮短為原來(lái)的$\frac{1}{2}$倍(縱坐標(biāo)不變),最后把得到的函數(shù)圖象向左平移$\frac{π}{8}$個(gè)單位得到函數(shù)y=f(x)的圖象.
(Ⅰ)寫(xiě)出函數(shù)y=f(x)的解析式;
(Ⅱ)用五點(diǎn)法作出函數(shù)y=f(x)($x∈[-\frac{π}{8},\frac{7π}{8}]$)的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.設(shè)定義在R上的偶函數(shù)f(x)在區(qū)間(-∞,0]上單調(diào)遞減,若f(1-m)<f(m),則實(shí)數(shù)m的取值范圍是($\frac{1}{2}$,+∞).

查看答案和解析>>

同步練習(xí)冊(cè)答案