【題目】已知的圖像可由的圖像平移得到,對于任意的實數(shù),均有成立,且存在實數(shù),使得為奇函數(shù).

(Ⅰ)求函數(shù)的解析式.

(Ⅱ)函數(shù)的圖像與直線有兩個不同的交點,若,,求實數(shù)的取值范圍.

【答案】(1) ;(2) 實數(shù)的取值范圍是.

【解析】

分析:(Ⅰ)根據(jù)題意的圖像關(guān)系對稱,關(guān)于對稱,

可設(shè),

又根據(jù)存在實數(shù),使得為奇函數(shù),可求函數(shù)的解析式.

(Ⅱ)根據(jù)題意的圖像與有兩個不同交點,

有兩個解,由,解得:,

,,直線恒過定點連線的斜率為,∴.符合

詳解:

(Ⅰ)的圖像關(guān)系對稱,關(guān)于對稱,

∴可設(shè)

,

又存在實數(shù),使得為奇函數(shù),

不含常數(shù)項.

(Ⅱ)∵的圖像與有兩個不同交點,

有兩個解,

,

解得:,

,連線的斜率為,

綜上所述,實數(shù)的取值范圍是

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】半徑小于的圓經(jīng)過點,圓心在直線上,并且與直線相交所得的弦長為

)求圓的方程.

已知點,動點到圓的切線長等于到的距離,求的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個幾何體,它的下面是一個圓柱,上面是一個圓錐,并且圓錐的底面與圓柱的上底面重合,圓柱的底面直徑為3 cm,高為4 cm,圓錐的高為3 cm,畫出此幾何體的直觀圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,是臨江公園內(nèi)一個等腰三角形形狀的小湖(假設(shè)湖岸是筆直的),其中兩腰.為了給市民營造良好的休閑環(huán)境,公園管理處決定在湖岸,上分別取點,(異于線段端點),在湖上修建一條筆直的水上觀光通道(寬度不計),使得三角形和四邊形的周長相等.

(1)若水上觀光通道的端點為線段的三等分點(靠近點),求此時水上觀光通道的長度;

(2)當(dāng)為多長時,觀光通道的長度最短?并求出其最短長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司為了解用戶對其產(chǎn)品的滿意度,從A,B兩地區(qū)分別隨機(jī)調(diào)查了40個用戶,根據(jù)用戶對產(chǎn)品的滿意度評分,得到A地區(qū)用戶滿意度評分的頻率分布直方圖和B地區(qū)用戶滿意度評分的頻數(shù)分布表。

A地區(qū)用戶滿意度評分的頻率分布直方圖

B地區(qū)用戶滿意度評分的頻數(shù)分布表

(Ⅰ)在答題卡上作出B地區(qū)用戶滿意度評分的頻率分布直方圖,并通過直方圖比較兩地區(qū)滿意度評分的平均值及分散程度(不要求計算出具體值,給出結(jié)論即可);

(Ⅱ)根據(jù)用戶滿意度評分,將用戶的滿意度從低到高分為三個等級:

滿意度評分

低于70分

70分到89分

不低于90分

滿意度等級

不滿意

滿意

非常滿意

估計哪個地區(qū)的滿意度等級為不滿意的概率大?說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是等差數(shù)列, 是等比數(shù)列,且 .

1)數(shù)列的通項公式;

2)設(shè),求數(shù)列項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱臺ABCDEF中,平面BCFE⊥平面ABC,∠ACB=90°,BEEFFC=1,BC=2,AC=3.

(1)求證:BF⊥平面ACFD;

(2)求二面角B-AD-F的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C經(jīng)過P4-2),Q-13)兩點,且圓心在x軸上。

1)求直線PQ的方程;

2)圓C的方程;

3)若直線l∥PQ,且l與圓C交于點A,B,且以線段AB為直徑的圓經(jīng)過坐標(biāo)原點,求直線l的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面是平行四邊形, ,側(cè)面底面 , , 分別為, 的中點,點在線段上.

(1)求證: 平面

(2)如果三棱錐的體積為,求點到面的距離.

【答案】(1)證明見解析;(2)

【解析】試題分析:

(1)在平行四邊形中,得出,進(jìn)而得到,證得底面,得出,進(jìn)而證得平面

(2)由到面的距離為,所以, 中點,即可求解的值.

試題解析:

證明:(1)在平行四邊形中,因為,

所以,由 分別為, 的中點,得,所以

側(cè)面底面,且, 底面

又因為底面,所以

又因為 平面, 平面

所以平面

解:(2)到面的距離為1,所以, 中點,

型】解答
結(jié)束】
21

【題目】已知函數(shù)

(1)當(dāng)時,求函數(shù)在點處的切線方程;

(2)求函數(shù)的極值;

(3)若函數(shù)在區(qū)間上是增函數(shù),試確定的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案