12.(x2+$\frac{1}{x^2}$+2)5展開式中x4項(xiàng)的系數(shù)為120.

分析 變形(x2+$\frac{1}{x^2}$+2)5=$(x+\frac{1}{x})^{10}$,利用二項(xiàng)式定理的通項(xiàng)公式即可得出.

解答 解:(x2+$\frac{1}{x^2}$+2)5=$(x+\frac{1}{x})^{10}$,
其通項(xiàng)公式Tr+1=${∁}_{10}^{r}$${x}^{10-r}(\frac{1}{x})^{r}$=${∁}_{10}^{r}$x10-2r
令10-2r=4,解得r=3.
∴展開式中x4項(xiàng)的系數(shù)=${∁}_{10}^{3}$=$\frac{10×9×8}{3×2×1}$=120.
故答案為:120.

點(diǎn)評(píng) 本題主要考查二項(xiàng)展開式等基礎(chǔ)知識(shí),考查運(yùn)算化簡能力、推理計(jì)算能力、化歸轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.對(duì)?a,b∈R,定義運(yùn)算:a⊕b=a(a-b),a?b=b(a+b).則下列判斷正確的是④⑤.
①2016⊕2017=2017;②(x+1)⊕1=1?x;③f(x)=x?(x⊕1)的零點(diǎn)為1,$\frac{1}{2}$;
④a⊕b=b⊕a的必要不充分條件是a=b;⑤a?b=b?a的充要條件是a⊕b=b⊕a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,在△ABC中,∠BAC=120°,AC=3,△ABC的面積等于$\frac{15\sqrt{3}}{4}$,D為邊長BC上一點(diǎn).
(1)求BC的長;
(2)當(dāng)AD=$\frac{15}{8}$時(shí),求cos∠CAD的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.復(fù)數(shù)z=$\frac{1+2i}{1-i}$對(duì)應(yīng)的點(diǎn)z在復(fù)數(shù)平面的( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.如圖由曲線y=x2+2x與y=2x+1所圍成的陰影部分的面積是(  )
A.0B.$\frac{2}{3}$C.$\frac{4}{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若(1-2x)5=a0+a1x+…+a5x5(x∈R),則(a0+a2+a42-(a1+a3+a52=( 。
A.243B.-243C.81D.-81

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.?dāng)S兩顆質(zhì)地均勻的骰子,在已知它們的點(diǎn)數(shù)不同的條件下,有一顆是6點(diǎn)的概率是$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.如圖,網(wǎng)格紙上小正方形的邊長為1,粗實(shí)線畫出的是某幾何體的三視圖,則該幾何體最長的棱長等于( 。
A.4B.6C.$4\sqrt{2}$D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)函數(shù)f′(x)是偶函數(shù)f(x)(x∈(-∞,0)∪(0,+∞)的導(dǎo)函數(shù),f(-1)=0,當(dāng)x>0時(shí),xf′(x)-f(x)<0,則使得f(x)>0成立的x的取值范圍是(  )
A.(-∞,-1)∪(0,1)B.(-1,0)∪(1,+∞)C.(-1,0)∪(0,1)D.(0,1)∪(1,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案