分析 (1)由已知可求$\frac{1}{2}=\frac{1}{2}cos({2×\frac{π}{6}-φ})$,結(jié)合范圍0<φ<π,即可得解φ的值;
(2)由(1)利用三角函數(shù)平移變換的規(guī)律可求$y=g(x)=\frac{1}{2}cos({4x-\frac{π}{3}})$,由$x∈[{0,\frac{π}{4}}]$,利用余弦函數(shù)的圖象可求其值域.
解答 解:(1)∵$f(x)=\frac{1}{2}cos({2x-φ})$,且函數(shù)圖象過(guò)點(diǎn)$({\frac{π}{6},\frac{1}{2}})$,
∴$\frac{1}{2}=\frac{1}{2}cos({2×\frac{π}{6}-φ})$,即$cos({\frac{π}{3}-φ})=1$,解得$φ=\frac{π}{3}+2kπ,k∈{z}$.
又0<φ<π,
∴$φ=\frac{π}{3}$.
(2)由(1)知$f(x)=\frac{1}{2}cos({2x-\frac{π}{3}})$,
將函數(shù)y=f(x)的圖象上各點(diǎn)的橫坐標(biāo)縮短到原來(lái)的$\frac{1}{2}$,
縱坐標(biāo)不變,得到函數(shù)$y=g(x)=\frac{1}{2}cos({4x-\frac{π}{3}})$的圖象.
∵$x∈[{0,\frac{π}{4}}]$,
∴$4x-\frac{π}{3}∈[{-\frac{π}{3},\frac{2π}{3}}]$,
故$-\frac{1}{2}≤cos({4x-\frac{π}{3}})≤1$.
∴y=g(x)在$[{0,\frac{π}{4}}]$上的最大值和最小值分別為$\frac{1}{2}$和$-\frac{1}{4}$.
點(diǎn)評(píng) 本題主要考查了三角函數(shù)平移變換的規(guī)律,余弦函數(shù)的圖象和性質(zhì),三角函數(shù)恒等變換的應(yīng)用,考查了計(jì)算能力和數(shù)形結(jié)合思想,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (4,16) | B. | (0,12) | C. | (9,21) | D. | (14,16) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-∞,3) | B. | $(-∞,2\sqrt{2})$ | C. | (-∞,$\frac{11}{3}$) | D. | (-∞,$\frac{9}{2}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (1.+∞) | B. | (0.1) | C. | ∅ | D. | (0.1)U(1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 輸出不大于990且能被15整除的所有正整數(shù) | |
B. | 輸出不大于66且能被15整除的所有正整數(shù) | |
C. | 輸出67 | |
D. | 輸出能被15整除且大于66的正整數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
P(K2≥k) | 0.05 | 0.01 |
k | 3.841 | 6.635 |
場(chǎng)數(shù) | 9 | 10 | 11 | 12 | 13 | 14 |
人數(shù) | 10 | 18 | 22 | 25 | 20 | 5 |
非歌迷 | 歌迷 | 總計(jì) | |
男 | |||
女 | |||
總計(jì) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com