2.直三棱柱ABC-A1B1C1中,AB⊥AC,AB=2,AC=4,AA1=2,D為BC的中點.則直線DB1與平面A1C1D所成角的正弦值$\frac{4}{15}\sqrt{5}$.

分析 分別以AB,AC,AA1所在直線為x,y,z軸,建立空間直角坐標系,利用向量法能求出直線DB1與平面A1C1D所成角的正弦值.

解答 解:分別以AB,AC,AA1所在直線為x,y,z軸,建立空間直角坐標系.
則A(0,0,0),B(2,0,0),
C(0,4,0),A1(0,0,2),B1(2,0,2),
C1(0,4,2),
∵D為BC的中點,∴D(1,2,0),
$\overrightarrow{D{B}_{1}}$=(1,-2,2),$\overrightarrow{{A}_{1}{C}_{1}}$(0,4,0),$\overrightarrow{{A}_{1}D}$=(1,2,-2),
設(shè)平面A1C1D的法向量為$\overrightarrow{n}$=(x,y,z),
則$\left\{\begin{array}{l}{4y=0}\\{x+2y-2z=0}\end{array}\right.$,取x=2,
得$\overrightarrow{n}$=(2,0,1),
又cos<$\overrightarrow{D{B}_{1}}$,$\overrightarrow{n}$>=$\frac{4}{3\sqrt{5}}$=$\frac{4\sqrt{5}}{15}$,
∴直線DB1與平面A1C1D所成角的正弦值為$\frac{4}{15}\sqrt{5}$.
故答案為:$\frac{4}{15}\sqrt{5}$.

點評 本題考查線面角的正弦值的求法,考查向量法的合理運用,正確求出平面的法向量是關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

5.在(1+x)3+(1+x)4+(1+x)5+…+(1+x)10的展開式中,含x2項的系數(shù)為(  )
A.162B.163C.164D.165

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.如圖,已知三棱錐P-ABC中,AB=5,AC=7,BC=8,PB⊥面ABC,PB=12.
(Ⅰ)求二面角P-AC-B的正切值;
(Ⅱ)求直線BP與平面PAC所成的角正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.如圖是求x1,x2…x10的乘積S的程序框圖,圖中空白框中應填入的內(nèi)容為( 。
A.S=S×(n+1)B.S=S×xn+1C.S=S×nD.S=S×xn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知曲線C1:$\left\{\begin{array}{l}{x=-4+\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$(t為參數(shù)),C2:$\left\{\begin{array}{l}{x=-2+cosθ}\\{y=1+sinθ}\end{array}\right.$(θ為參數(shù)).
(1)化C1、C2的方程為普通方程,并說明它們分別表示什么曲線;
(2)若曲線C1和C2相交于A,B兩點,求|AB|

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.若定義在[0,+∞)上的函數(shù)f(x)滿足:當0≤x<2時,f(x)=$\sqrt{1-{{(x-1)}^2}}$,當2k-2≤x<2k+1-2(k∈N*)時,f(x)=2f($\frac{x-2}{2}$),則函數(shù)F(x)=|${\frac{lnx}{x}}$|-f(x)在區(qū)間(0,2016)的零點個數(shù)為19.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知函數(shù)f(x)=|x|+|x-1|.
(Ⅰ)若f(x)≥|m-1|恒成立,求實數(shù)m的最大值M;
(Ⅱ)在(Ⅰ)成立的條件下,正實數(shù)m,n,p滿足m+n+p=$\frac{3}{2}$M,求證:mn+np+pm≤3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.如圖,四棱柱ABCD-A1B1C1D1的底面ABCD是平行四邊形,且AA1⊥底面ABCD,AB=2,AA1=BC=4,∠ABC=60°,點E為BC中點,點F為B1C1中點.
(Ⅰ)求證:平面A1ED⊥平面A1AEF;
(Ⅱ)求三棱錐F-A1ED與F-A1D1D的體積之比;
(Ⅲ)求直線AD與平面A1ED所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知定義在(0,+∞)上的函數(shù)f(x)滿足f(x)=f($\frac{1}{x}$),當x∈(0,1]時,f(x)=-lnx,若曲線g(x)=f(x)-2ax在(0,e2](其中e是自然對數(shù)的底數(shù))內(nèi)的圖象與x軸有3個交點,則實數(shù)a的取值范圍為( 。
A.($\frac{1}{4e}$,$\frac{1}{e}$)B.($\frac{1}{4e}$,$\frac{1}{2e}$]C.[$\frac{1}{e^2}$,$\frac{1}{e}$)D.[$\frac{1}{e^2}$,$\frac{1}{2e}$)

查看答案和解析>>

同步練習冊答案