【題目】設函數f(x)滿足xf′(x)+f(x)= ,f(e)= ,則函數f(x)( )
A.在(0,e)上單調遞增,在(e,+∞)上單調遞減
B.在(0,+∞)上單調遞增
C.在(0,e)上單調遞減,在(e,+∞)上單調遞增
D.在(0,+∞)上單調遞減
【答案】D
【解析】解:∵[x(f(x)]′=xf′(x)+f(x),
∴[xf(x)]′= =( +c)′
∴xf(x)= +c
∴f(x)= +
∵f(e)= ,
∴ =
即c=
∴f′(x)= ﹣ =﹣ =﹣ <0
∴f(x)在(0,+∞)為減函數.
故選:D.
【考點精析】根據題目的已知條件,利用基本求導法則和利用導數研究函數的單調性的相關知識可以得到問題的答案,需要掌握若兩個函數可導,則它們和、差、積、商必可導;若兩個函數均不可導,則它們的和、差、積、商不一定不可導;一般的,函數的單調性與其導數的正負有如下關系: 在某個區(qū)間內,(1)如果,那么函數在這個區(qū)間單調遞增;(2)如果,那么函數在這個區(qū)間單調遞減.
科目:高中數學 來源: 題型:
【題目】已知曲線 (t為參數),以原點為極點,以x正半軸為極軸,建立極坐標系,曲線 .
(Ⅰ)寫出曲線C1的普通方程,曲線C2的直角坐標方程;
(Ⅱ)若M(1,0),且曲線C1與曲線C2交于兩個不同的點A,B,求 的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)= x2﹣alnx(a∈R)
(1)若函數f(x)在x=2處的切線方程為y=x+b,求a,b的值;
(2)討論方程f(x)=0解的個數,并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=axln(x+1)+x+1(x>﹣1,a∈R).
(1)若 ,求函數f(x)的單調區(qū)間;
(2)當x≥0時,不等式f(x)≤ex恒成立,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,在四棱錐P﹣ABCD中,底面ABCD為菱形,E為AC與BD的交點,PA⊥平面ABCD,M為PA中點,N為BC中點.
(1)證明:直線MN∥平面PCD;
(2)若點Q為PC中點,∠BAD=120°,PA= ,AB=1,求三棱錐A﹣QCD的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知直三棱柱ABC﹣A1B1C1的底面為正三角形,E,F(xiàn)分別是A1C1 , B1C1上的點,且滿足A1E=EC1 , B1F=3FC1 .
(1)求證:平面AEF⊥平面BB1C1C;
(2)設直三棱柱ABC﹣A1B1C1的棱長均相等,求二面角C1﹣AE﹣B的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設A是雙曲線 的右頂點,F(xiàn)(c,0)是右焦點,若拋物線 的準線l上存在一點P,使∠APF=30°,則雙曲線的離心率的范圍是( )
A.[2,+∞)
B.(1,2]
C.(1,3]
D.[3,+∞)
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com