2.已知函數(shù)f(x)是偶函數(shù),而且在(0,+∞)上是減函數(shù),判斷f(x)在(-∞,0)上是增函數(shù)還是減函數(shù),并證明.

分析 用單調(diào)性定義來證明,先在給定區(qū)間上取兩個(gè)變量,且界定大小,不妨設(shè)x1<x2<0則有-x1>-x2>0,再由“f(x)在(0,+∞)上是減函數(shù)”可得到f(-x1)>f(-x2),然后由“f(x)是偶函數(shù)”轉(zhuǎn)化為f(x1)<f(x2),再由單調(diào)性定義判斷.

解答 解:f(x)在(-∞,0)上是增函數(shù)(1分)
證明:設(shè)x1<x2<0則-x1>-x2>0(3分)
∵f(x)在(0,+∞)上是減函數(shù)
∴f(-x1)<f(-x2)(7分)
又f(x)是偶函數(shù)
∴f(-x1)=f(x1),f(-x2)=f(x2
∴f(x1)<f(x2
∴f(x)在(-∞,0)上是增函數(shù)(12分)

點(diǎn)評(píng) 本題主要考查奇偶函數(shù)在對(duì)稱區(qū)間上的單調(diào)性,結(jié)論是:偶函數(shù)在對(duì)稱區(qū)間上的單調(diào)性相反,奇函數(shù)在對(duì)稱區(qū)間上的單調(diào)性相同.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知平面α,β及直線a滿足α⊥β,α∩β=AB,a∥α,a⊥AB,則(  )
A.a?βB.a⊥β
C.a∥βD.a與β相交但不垂直

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖(1),已知長方形ABCD中,AB=2,AD=1,M為CD的中點(diǎn),將△ADM沿AM折起,使得平面ADM⊥平面ABCM,如圖(2)E為BD的中點(diǎn).
(1)求證:CE∥平面ADM;
(2)求四面體EAMD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.球面面積等于它的大圓面積的(  )倍.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知ab>0,下面四個(gè)等式中:
①lg(ab)=lga+lgb
②lg$\frac{a}$=lga-lgb
③$\frac{1}{2}$lg($\frac{a}$)2=lg$\frac{a}$
④lg(ab)=$\frac{1}{lo{g}_{ab}10}$
則正確命題的個(gè)數(shù)為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.如果一個(gè)幾何體的三視圖是如圖所示(單位:cm)則此幾何體的表面積是(  )
A.$(16+6\sqrt{2})c{{m}^{2}}^{\;}$B.22cm2C.$(12+6\sqrt{2})c{m}^{2}$D.$(18+2\sqrt{3})c{m}^{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.下列結(jié)論正確的是( 。
A.圓錐的頂點(diǎn)與底面圓周上的任意一點(diǎn)的連線都是母線
B.以三角形的一條邊所在直線為旋轉(zhuǎn)軸,其余兩邊繞旋轉(zhuǎn)軸旋轉(zhuǎn)形成的曲面所圍成的幾何體叫圓錐
C.棱錐的側(cè)棱長與底面多邊形的邊長都相等,則該棱錐可能是六棱錐
D.各個(gè)面都是三角形的幾何體是三棱錐

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知$|{\overrightarrow a}|=2,|{\overrightarrow b}|=3$,$(2\overrightarrow a+\overrightarrow b)⊥(\overrightarrow a-2\overrightarrow b)$,則向量$\overrightarrow b$在向量$\overrightarrow a$方向上的投影為( 。
A.-$\frac{5}{3}$B.$\frac{5}{4}$C.$-\frac{5}{6}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若集合A={x|-2<x<1},B={x|0<x<2},則集合A∪B=( 。
A.{x|-1<x<1}B.{x|-2<x<2}C.{x|0<x<1}D.{x|1<x<2}

查看答案和解析>>

同步練習(xí)冊(cè)答案