【題目】已知△ABC的周長為l,面積為S,則△ABC的內(nèi)切圓半徑為r= .將此結(jié)論類比到空間,已知四面體ABCD的表面積為S,體積為V,則四面體ABCD的內(nèi)切球的半徑R=

【答案】
【解析】解:設四面體的內(nèi)切球的球心為O, 則球心O到四個面的距離都是R,
所以四面體的體積等于以O為頂點,
分別以四個面為底面的4個三棱錐體積的和.
則四面體的體積為 V四面體A﹣BCD= (S1+S2+S3+S4)R
∴R=
所以答案是:

【考點精析】根據(jù)題目的已知條件,利用類比推理和球內(nèi)接多面體的相關知識可以得到問題的答案,需要掌握根據(jù)兩類不同事物之間具有某些類似(或一致)性,推測其中一類事物具有與另外一類事物類似的性質(zhì)的推理,叫做類比推理;球的內(nèi)接正方體的對角線等于球直徑;長方體的外接球的直徑是長方體的體對角線長.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在銳角△ABC中,sinA=sinBsinC,則tanB+2tanC的最小值是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)

(1)求的單調(diào)區(qū)間;

(2)證明:曲線不存在經(jīng)過原點的切線.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖①,在平面內(nèi) 的菱形 都是正方形.將兩個正方形分別沿 折起,使 重合于點 .設直線 過點 且垂直于菱形ABCD所在的平面,點 是直線 上的一個動點,且與點 位于平面 同側(cè)(圖②).

(1)求證:不管點 如何運動都有 平面 ;

(2)當線段時,求二面角 的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市的教育主管部門對所管轄的學校進行年終督導評估,為了解某學校師生對學校教學管理的滿意度,分別從教師和不同年級的同學中隨機抽取若干師生,進行評分(滿分100分),繪制如下頻率分布直方圖(分組區(qū)間為, , , ),并將分數(shù)從低到高分為四個等級:

滿意度評分

滿意度等級

不滿意

基本滿意

滿意

非常滿意

已知滿意度等級為基本滿意的有340人.

(1)求表中的值及不滿意的人數(shù);

(2)在等級為不滿意的師生中,老師占,現(xiàn)從該等級師生中按分層抽樣抽取12人了解不滿意的原因,并從中抽取3人擔任整改督導員,記為老師整改督導員的人數(shù),求的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓方程是 =1,F(xiàn)1 , F2是它的左、右焦點,A,B為它的左、右頂點,l是橢圓的右準線,P是橢圓上一點,PA、PB分別交準線l于M,N兩點.
(1)若P(0, ),求 的值;
(2)若P(x0 , y0)是橢圓上任意一點,求 的值;
(3)能否將問題推廣到一般情況,即給定橢圓方程是 =1(a>b>0),P(x0 , y0)是橢圓上任意一點,問 是否為定值?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四邊形是矩形,,的中點,交于點,平面.

求證:;

求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)若的極值點,求的極大值;

(2)求實數(shù)的范圍,使得恒成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)
(1)求函數(shù)f(x)的單調(diào)增區(qū)間;
(2)若 ,求cos2α的值.

查看答案和解析>>

同步練習冊答案