15.同時(shí)具有性質(zhì):“①最小正周期是π;②圖象關(guān)于直線$x=\frac{π}{3}$對(duì)稱;③在$[{-\frac{π}{6},\frac{π}{3}}]$上是增函數(shù).”的一個(gè)函數(shù)為(  )
A.$y=sin({\frac{x}{2}+\frac{π}{6}})$B.$y=cos({\frac{x}{2}-\frac{π}{6}})$C.$y=cos({2x+\frac{π}{6}})$D.$y=sin({2x-\frac{π}{6}})$

分析 利用正弦函數(shù)的圖象和性質(zhì),逐一判斷各個(gè)選項(xiàng)是否正確,從而得出結(jié)論.

解答 解:由于y=sin($\frac{x}{2}$+$\frac{π}{6}$)的最小正周期為$\frac{2π}{\frac{1}{2}}$=4π,不滿足①,故排除A.
由于y=cos($\frac{x}{2}$-$\frac{π}{6}$)的最小正周期為$\frac{2π}{\frac{1}{2}}$=4π,不滿足①,故排除B.
由于y=cos(2x+$\frac{π}{6}$),在$[{-\frac{π}{6},\frac{π}{3}}]$上,2x+$\frac{π}{6}$∈[-$\frac{π}{6}$,$\frac{5π}{6}$],
故y=cos(2x+$\frac{π}{6}$)在$[{-\frac{π}{6},\frac{π}{3}}]$上沒(méi)有單調(diào)性,故排除C.
對(duì)于y=sin(2x-$\frac{π}{6}$)的最小正周期為$\frac{2π}{2}$=π;
當(dāng)$x=\frac{π}{3}$時(shí),函數(shù)取得最大值為1,故圖象關(guān)于直線$x=\frac{π}{3}$對(duì)稱;
在$[{-\frac{π}{6},\frac{π}{3}}]$上,2x-$\frac{π}{6}$∈[-$\frac{π}{2}$,$\frac{π}{2}$],故y=sin(2x-$\frac{π}{6}$)在$[{-\frac{π}{6},\frac{π}{3}}]$上是增函數(shù),
故D滿足題中的三個(gè)條件,
故選:D.

點(diǎn)評(píng) 本題主要考查正弦函數(shù)的圖象和性質(zhì),屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.如果x0是函數(shù)f(x)的一個(gè)零點(diǎn),且在這個(gè)零點(diǎn)兩側(cè)函數(shù)值異號(hào),則稱x0是函數(shù)f(x)的一個(gè)變號(hào)零點(diǎn),已知函數(shù)f(x)=ax2+1+lnx在($\frac{1}{e}$,e)上有且僅有一個(gè)變號(hào)零點(diǎn),則實(shí)數(shù)a的取值范圍為(  )
A.[-$\frac{2}{{e}^{2}}$,0)B.[-$\frac{2}{{e}^{2}}$,0)∪{$-\frac{1}{2}$e}C.[-$\frac{e}{2}$,0)D.[-$\frac{2}{{e}^{2}}$,0]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知直線$\sqrt{3}x-y-\sqrt{3}=0$與拋物線y2=4x交于A,B兩點(diǎn)(A在x軸上方),與x軸交于F點(diǎn),$\overrightarrow{OF}=λ\overrightarrow{OA}+μ\overrightarrow{OB}$,則λ-μ=( 。
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.$\frac{1}{3}$D.$-\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知A(5,3),F(xiàn)是拋物線y2=4x的焦點(diǎn),P是拋物線上的動(dòng)點(diǎn),則△PAF周長(zhǎng)的最小值為( 。
A.9B.10C.11D.15

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.“共享單車(chē)”的出現(xiàn),為我們提供了一種新型的交通方式.某機(jī)構(gòu)為了調(diào)查人們對(duì)此種交通方式的滿意度,從交通擁堵不嚴(yán)重的A城市和交通擁堵嚴(yán)重的B城市分別隨機(jī)調(diào)查了20個(gè)用戶,得到了一個(gè)用戶滿意度評(píng)分的樣本,并繪制出莖葉圖如圖:

(Ⅰ)根據(jù)莖葉圖,比較兩城市滿意度評(píng)分的平均值和方差(不要求計(jì)算出具體值,得出結(jié)論即可);
(Ⅱ)若得分不低于80分,則認(rèn)為該用戶對(duì)此種交通方式“認(rèn)可”,否則認(rèn)為該用戶對(duì)此種交通方式“不認(rèn)可”,請(qǐng)根據(jù)此樣本完成下列2×2列聯(lián)表,并據(jù)此樣本分析你是否有95%的把握認(rèn)為城市擁堵與認(rèn)可共享單車(chē)有關(guān).
  認(rèn)可 不認(rèn)可 合計(jì)
 A城市   
 B城市   
 合計(jì)   
P(Χ2≥k)0.050.010
k3.8416.635
(參考公式:${Χ^2}=\frac{{n{{({n_{11}}{n_{22}}-{n_{12}}{n_{21}})}^2}}}{{{n_{1+}}{n_{2+}}{n_{+1}}{n_{+2}}}}$)
(Ⅲ)在A和B兩個(gè)城市滿意度在90分以上的用戶中任取2戶,求來(lái)自不同城市的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的中心在原點(diǎn),F(xiàn)1,F(xiàn)2分別為左、右焦點(diǎn),A,B分別是橢圓的上頂點(diǎn)和右頂點(diǎn),P是橢圓上一點(diǎn),且PF1⊥x軸,PF2∥AB,則此橢圓的離心率等于( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{{\sqrt{2}}}{2}$D.$\frac{{\sqrt{5}}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知命題p1:若sinx≠0,則sinx+$\frac{1}{sinx}$≥2恒成立;p2:x+y=0的充要條件是$\frac{x}{y}$=-1,則下列命題為真命題的是( 。
A.p1∧p2B.p1∨p2C.p1∧(¬p2D.(¬p1)∨p2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知橢圓E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的離心率為$\frac{{\sqrt{3}}}{2}$,且過(guò)點(diǎn)$({1,\frac{{\sqrt{3}}}{2}})$.
(1)求E的方程;
(2)若直線l:y=kx+m(k>0)與E相交于P,Q兩點(diǎn),且OP與OQ(O為坐標(biāo)原點(diǎn))的斜率之和為2,求O到直線l距離的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.如圖,直線x+2y=a與圓x2+y2=1相交于不同的兩點(diǎn)A(x1,y1),B(x2,y2),O為坐標(biāo)原點(diǎn),若$\overrightarrow{OA}$•$\overrightarrow{OB}$=a,則實(shí)數(shù)a的值為(  )
A.$\frac{5-\sqrt{65}}{4}$B.$\frac{\sqrt{65}-5}{4}$C.$\frac{5-\sqrt{55}}{4}$D.$\frac{\sqrt{55}-5}{4}$

查看答案和解析>>

同步練習(xí)冊(cè)答案