19.如圖,直線x+2y=a與圓x2+y2=1相交于不同的兩點(diǎn)A(x1,y1),B(x2,y2),O為坐標(biāo)原點(diǎn),若$\overrightarrow{OA}$•$\overrightarrow{OB}$=a,則實(shí)數(shù)a的值為(  )
A.$\frac{5-\sqrt{65}}{4}$B.$\frac{\sqrt{65}-5}{4}$C.$\frac{5-\sqrt{55}}{4}$D.$\frac{\sqrt{55}-5}{4}$

分析 分別利用勾股定理和距離公式求出O到直線AB的距離,列方程解出a即可.

解答 解:$\overrightarrow{OA}•\overrightarrow{OB}$=cos∠AOB=a,
∴AB=$\sqrt{1+1-2cos∠AOB}$=$\sqrt{2-2a}$,
∴O到直線AB的距離d=$\sqrt{1-(\frac{\sqrt{2-2a}}{2})^{2}}$,
又d=$\frac{|a|}{\sqrt{5}}$,
∴$\sqrt{1-(\frac{\sqrt{2-2a}}{2})^{2}}$=$\frac{|a|}{\sqrt{5}}$,解得a=$\frac{5-\sqrt{65}}{4}$或a=$\frac{5+\sqrt{65}}{4}$>1(舍).
故選:A.

點(diǎn)評 本題考查了平面向量的數(shù)量積運(yùn)算,直線與圓的位置關(guān)系,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.同時(shí)具有性質(zhì):“①最小正周期是π;②圖象關(guān)于直線$x=\frac{π}{3}$對稱;③在$[{-\frac{π}{6},\frac{π}{3}}]$上是增函數(shù).”的一個(gè)函數(shù)為( 。
A.$y=sin({\frac{x}{2}+\frac{π}{6}})$B.$y=cos({\frac{x}{2}-\frac{π}{6}})$C.$y=cos({2x+\frac{π}{6}})$D.$y=sin({2x-\frac{π}{6}})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.|x|•(1-2x)>0的解集為( 。
A.(-∞,0)∪(0,$\frac{1}{2}$)B.(-∞,$\frac{1}{2}$)C.($\frac{1}{2}$,+∞)D.(0,$\frac{1}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.給出下列四個(gè)命題:
①?x0∈R,ln(x02+1)<0;
②?x>2,x2>2x
③?α,β∈R,sin(α-β)=sin α-sin β;
④若q是¬p成立的必要不充分條件,則¬q是p成立的充分不必要條件.
其中真命題的個(gè)數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)函數(shù)f(x)=(x-a)2+(ln x2-2a)2,其中x>0,a∈R,存在x0使得f(x0)≤b成立,則實(shí)數(shù)b的最小值為( 。
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{4}{5}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),點(diǎn)F,B分別是橢圓的右焦點(diǎn)與上頂點(diǎn),O為坐標(biāo)原點(diǎn),記△OBF的周長與面積分別為C和S.
(Ⅰ)求$\frac{C}{\sqrt{S}}$的最小值;
(Ⅱ)如圖,過點(diǎn)F的直線l交橢圓于P,Q兩點(diǎn),過點(diǎn)F作l的垂線,交直線x=3b于點(diǎn)R,當(dāng)$\frac{C}{\sqrt{S}}$取最小值時(shí),求$\frac{|FR|}{|PQ|}$的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.將函數(shù)f(x)=sin2x的圖象向右平移ϕ$({0<ϕ<\frac{π}{2}})$個(gè)單位后得到函數(shù)g(x)的圖象,若函數(shù)g(x)在區(qū)間$[{0,\frac{π}{3}}]$上單調(diào)遞增,且函數(shù)g(x)的最大負(fù)零點(diǎn)在區(qū)間$({-\frac{π}{3},-\frac{π}{12}})$內(nèi),則ϕ的取值范圍是(  )
A.$[{\frac{π}{12},\frac{π}{4}}]$B.$[{\frac{π}{6},\frac{5π}{12}})$C.$[{\frac{π}{6},\frac{π}{3}}]$D.$({\frac{π}{6},\frac{π}{4}}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖所示的幾何體是由棱臺ABC-A1B1C1和棱錐D-AA1C1C拼接而成的組合體,其底面四邊形ABCD是邊長為2的菱形,且∠BAD=60°,BB1⊥平面ABCD,BB1=2A1B1=2.
(Ⅰ)求證:平面AB1C⊥平面BB1D;
(Ⅱ)求二面角A1-BD-C1的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知P:?x>0,lnx<x,則¬P為( 。
A.?x≤0,lnx0>x0B.?x≤0,lnx0≥x0C.?x>0,lnx0≥x0D.?x>0,lnx0<x0

查看答案和解析>>

同步練習(xí)冊答案