14.已知向量$\overrightarrow a=({1,x}),\overrightarrow b=({1,x-1})$,若$({\overrightarrow a-2\overrightarrow b})⊥\overrightarrow a$,則$|{\overrightarrow a-2\overrightarrow b}|$=$\sqrt{2}$.

分析 可先求出向量$\overrightarrow{a}-2\overrightarrow$的坐標(biāo),根據(jù)條件得到$(\overrightarrow{a}-2\overrightarrow)•\overrightarrow{a}=0$,從而可求出x=1,進(jìn)而求出向量$\overrightarrow{a}-2\overrightarrow$的坐標(biāo),從而求得該向量的長度.

解答 解:∵$\overrightarrow{a}-2\overrightarrow=(-1,2-x)$,且$(\overrightarrow{a}-2\overrightarrow)⊥\overrightarrow{a}$;
∴$(\overrightarrow{a}-2\overrightarrow)•\overrightarrow{a}=-1+x(2-x)$=-x2+2x-1=0;
∴x=1;
∴$\overrightarrow{a}-2\overrightarrow=(-1,1)$;
∴$|\overrightarrow{a}-2\overrightarrow|=\sqrt{2}$.
故答案為:$\sqrt{2}$.

點(diǎn)評 考查向量坐標(biāo)的概念,向量垂直的充要條件,以及向量坐標(biāo)的數(shù)乘運(yùn)算.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.復(fù)數(shù)z=$\frac{2+i}{1-i}$(i為虛數(shù)單位)的共軛復(fù)數(shù)是$\frac{1}{2}-\frac{3}{2}i$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.甲、乙等4人在微信群中每人搶到一個紅包,金額為三個1元,一個5元,則甲、乙的紅包金額不相等的概率為( 。
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{1}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.幾何體的三視圖如圖所示,該幾何體的體積為(  )
A.2B.$\frac{2}{3}$C.$\frac{4}{3}$D.$\frac{5}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在等差數(shù)列{an}中,a2=1,a5=4.
(1)求數(shù)列{an}的通項公式an
(2)設(shè)${b_n}={2^{a_n}}$,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.下列說法正確的是(  )
A.“?x∈R,ex>0”的否定是“?x∈R,使ex>0”
B.若x+y≠3(x,y∈R),則x≠2或y≠1
C.“x2+2x≥ax(1≤x≤2)恒成立”等價于“(x2+2x)min≥(ax)max(1≤x≤2)”
D.“若a=-1,則函數(shù)f(x)=ax2+2x-1只有一個零點(diǎn)”的逆命題為真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.計算${({\frac{1+i}{1-i}})^{2017}}+{({\frac{1-i}{1+i}})^{2017}}$=(  )
A.-2iB.0C.2iD.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.甲、乙兩校各有3名教師報名支教,其中甲校2男1女,乙校1男2女,若從這6名教師中任選2名,選出的2名教師來自同一學(xué)校的概率為( 。
A.$\frac{5}{9}$B.$\frac{4}{9}$C.$\frac{3}{5}$D.$\frac{2}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)等差數(shù)列{an}的前n項和為Sn,已知a1+a2+a3=a4+a5,S5=60,則a10=( 。
A.16B.20C.24D.26

查看答案和解析>>

同步練習(xí)冊答案