A. | b2f(a)<a2f(b) | B. | b2f(a)>a2f(b) | C. | a2f(a)<b2f(b) | D. | a2f(a)>b2f(b) |
分析 構造函數(shù)g(x)=$\frac{f(x)}{{x}^{2}}$,x∈(0,+∞),利用導數(shù)研究其單調性即可得出.
解答 解:令g(x)=$\frac{f(x)}{{x}^{2}}$,x∈(0,+∞),
g′(x)=$\frac{xf′(x)-2f(x)}{{x}^{3}}$,
∵?x∈(0,+∞),2f(x)<xf′(x)恒成立,
∴g′(x)>0,
∴函數(shù)g(x)在x∈(0,+∞)上單調遞增,
∴g(a)>g(b),即$\frac{f(a)}{{a}^{2}}$>$\frac{f(b)}{^{2}}$,
∴b2f(a)>a2f(b),
故選:B.
點評 本題考查了利用導數(shù)研究其單調性極值與最值、構造函數(shù)法,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | ∅?P?M | B. | M?P?I | C. | M=∅ | D. | P=I且M≠P |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | M?N | B. | M?N | C. | M=N | D. | M?N |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-$\frac{2}{3}$,+∞) | B. | (-∞,-$\frac{2}{3}$) | C. | (-$\frac{2}{3}$,0) | D. | (-1,-$\frac{2}{3}$) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $[{1,\frac{5}{4}}]$ | B. | [1,2] | C. | $[{\frac{1}{2},\frac{5}{4}}]$ | D. | $[{\frac{1}{2},\frac{3}{2}}]$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
t | 0 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 |
y | 12 | 15.1 | 12.1 | 9.1 | 11.9 | 14.9 | 11.9 | 8.9 | 12.1 |
A. | y=12+3sin$\frac{πt}{6}$,t∈[0,24] | B. | y=12+3sin($\frac{πt}{6}$+π),t∈[0,24] | ||
C. | y=12+3sin$\frac{πt}{12}$,t∈[0,24] | D. | y=12+3sin($\frac{πt}{12}$+$\frac{π}{2}$),t∈[0,24] |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com