A. | 3x-4y+20=0 | B. | 3x-4y+20=0或x=4 | C. | 4x-3y+8=0 | D. | 4x-3y+8=0或x=4 |
分析 由圓的方程,可知圓心(0,0),r=5,圓心到弦的距離為4,若直線斜率不存在,則垂直x軸x=4,成立;若斜率存在,由圓心到直線距離d=$\frac{|-4k+8|}{\sqrt{{k}^{2}+1}}$=4,即可求得直線斜率,求得直線方程.
解答 解:圓心(0,0),r=5,圓心到弦的距離為4,
若直線斜率不存在,則垂直x軸
x=4,圓心到直線距離=|0-4|=4,成立;
若斜率存在
y-8=k(x-4)即:kx-y-4k+8=0
則圓心到直線距離d=$\frac{|-4k+8|}{\sqrt{{k}^{2}+1}}$=4,解得k=$\frac{3}{4}$,
綜上:x=4和3x-4y+20=0,
故選B.
點評 本題主要考查直線與圓的位置關(guān)系,主要涉及了圓心距,弦半距及半徑構(gòu)成的直角三角形,直線的方程形式及其性質(zhì),屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $[{-\frac{1}{2},\frac{1}{e}}]$ | B. | $({0,\frac{2}{e}}]$ | C. | $({-∞,0})∪[{\frac{2}{e},+∞})$ | D. | $({-∞,-\frac{1}{2}})∪[{\frac{1}{e},+∞})$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com