14.過點P(4,8)且被圓x2+y2=25截得的弦長為6的直線方程是( 。
A.3x-4y+20=0B.3x-4y+20=0或x=4C.4x-3y+8=0D.4x-3y+8=0或x=4

分析 由圓的方程,可知圓心(0,0),r=5,圓心到弦的距離為4,若直線斜率不存在,則垂直x軸x=4,成立;若斜率存在,由圓心到直線距離d=$\frac{|-4k+8|}{\sqrt{{k}^{2}+1}}$=4,即可求得直線斜率,求得直線方程.

解答 解:圓心(0,0),r=5,圓心到弦的距離為4,
若直線斜率不存在,則垂直x軸
x=4,圓心到直線距離=|0-4|=4,成立;
若斜率存在
y-8=k(x-4)即:kx-y-4k+8=0
則圓心到直線距離d=$\frac{|-4k+8|}{\sqrt{{k}^{2}+1}}$=4,解得k=$\frac{3}{4}$,
綜上:x=4和3x-4y+20=0,
故選B.

點評 本題主要考查直線與圓的位置關(guān)系,主要涉及了圓心距,弦半距及半徑構(gòu)成的直角三角形,直線的方程形式及其性質(zhì),屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

4.已知直線l1:x+my+6=0.l2:(m-2)x+3y+2m=0,求實數(shù)m的值使得:
(1)l1,l2相交;(2)l1⊥l2;(3)l1∥l2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.長方體ABCD-A1B1C1D1中,AB=BC=2,過A1,C1,B三點的平面截去長方體的一個角后,得到如圖所示的幾何體ABCD-A1C1D1,這個幾何體的體積為$\frac{40}{3}$
(1)求證:直線A1B∥平面CDD1C1
(2)求證:平面ACD1∥平面A1BC1
(3)求棱A1A的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知圓C:x2+(y+1)2=5,直線l:mx-y+1=0(m∈R)
(1)判斷直線l與圓C的位置關(guān)系;
(2)設(shè)直線l與圓C交于A、B兩點,若直線l的傾斜角為120°,求弦AB的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知函數(shù)y=|x|(x-4)
(1)畫出函數(shù)的圖象;
(2)利用圖象回答:當f(x)為何值時,方程x,y∈R有一解?有兩解?有三解?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.若存在兩個正實數(shù)x,y,使得等式2x+a(y-2ex)(lny-lnx)=0成立,則實數(shù)a的取值范圍為(  )
A.$[{-\frac{1}{2},\frac{1}{e}}]$B.$({0,\frac{2}{e}}]$C.$({-∞,0})∪[{\frac{2}{e},+∞})$D.$({-∞,-\frac{1}{2}})∪[{\frac{1}{e},+∞})$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.已知函數(shù)f(x),g(x)分別由如表給出:
x123
f(x)131
x123
g(x)321
則f(g(1))的值為1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.已知點A(x1,y1),B(x2,y2)是橢圓$\frac{{x}^{2}}{2}$+y2=1兩個不同的動點,且滿足x1•y1+x2•y2=-$\sqrt{2}$,則y12+y22的值是1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.數(shù)列{an}滿足:a1=3,an+1=an-2,則a100等于( 。
A.98B.-195C.-201D.-198

查看答案和解析>>

同步練習冊答案