A. | $[{-\frac{1}{2},\frac{1}{e}}]$ | B. | $({0,\frac{2}{e}}]$ | C. | $({-∞,0})∪[{\frac{2}{e},+∞})$ | D. | $({-∞,-\frac{1}{2}})∪[{\frac{1}{e},+∞})$ |
分析 根據(jù)函數(shù)與方程的關(guān)系將方程進(jìn)行轉(zhuǎn)化,利用換元法轉(zhuǎn)化為方程有解,構(gòu)造函數(shù)求函數(shù)的導(dǎo)數(shù),利用函數(shù)極值和單調(diào)性的關(guān)系進(jìn)行求解即可.
解答 解:由2x+a(y-2ex)(lny-lnx)=0得2x+a(y-2ex)ln$\frac{y}{x}$=0,
即2+a($\frac{y}{x}$-2e)ln$\frac{y}{x}$=0,
即設(shè)t=$\frac{y}{x}$,則t>0,
則條件等價(jià)為2+a(t-2e)lnt=0,
即(t-2e)lnt=-$\frac{2}{a}$有解,
設(shè)g(t)=(t-2e)lnt,
g′(t)=lnt+1-$\frac{2e}{t}$為增函數(shù),
∵g′(e)=lne+1-$\frac{2e}{e}$=1+1-2=0,
∴當(dāng)t>e時(shí),g′(t)>0,
當(dāng)0<t<e時(shí),g′(t)<0,
即當(dāng)t=e時(shí),函數(shù)g(t)取得極小值,為g(e)=(e-2e)lne=-e,
即g(t)≥g(e)=-e,
若(t-2e)lnt=-$\frac{2}{a}$有解,
則-$\frac{2}{a}$≥-e,即$\frac{2}{a}$≤e,
則a<0或a≥$\frac{2}{e}$,
故選:C
點(diǎn)評(píng) 本題主要考查不等式恒成立問題,根據(jù)函數(shù)與方程的關(guān)系,轉(zhuǎn)化為兩個(gè)函數(shù)相交問題,利用構(gòu)造法和導(dǎo)數(shù)法求出函數(shù)的極值和最值是解決本題的關(guān)鍵.綜合性較強(qiáng).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{\sqrt{3}}{2}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | -$\frac{1}{2}$+$\sqrt{3}$ | D. | $\frac{1}{2}$+$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3x-4y+20=0 | B. | 3x-4y+20=0或x=4 | C. | 4x-3y+8=0 | D. | 4x-3y+8=0或x=4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ($\frac{1}{2}$)${\;}^{\frac{2}{3}}$<2${\;}^{\frac{2}{3}}$<($\frac{1}{2}$)${\;}^{\frac{1}{3}}$ | B. | ($\frac{1}{2}$)${\;}^{\frac{2}{3}}$<($\frac{1}{2}$)${\;}^{\frac{1}{3}}$<2${\;}^{\frac{2}{3}}$ | ||
C. | 2${\;}^{\frac{2}{3}}$<($\frac{1}{2}$)${\;}^{\frac{1}{3}}$<($\frac{1}{2}$)${\;}^{\frac{2}{3}}$ | D. | 2${\;}^{\frac{2}{3}}$<($\frac{1}{2}$)${\;}^{\frac{2}{3}}$<($\frac{1}{2}$)${\;}^{\frac{1}{3}}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{9}{8}$ | B. | $\frac{9}{4}$ | C. | $\frac{3}{2}$ | D. | $\frac{3}{8}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com