分析 (1)利用等差數(shù)列的通項公式列出方程組,求出首項和公差,由此能求出數(shù)列{an}的通項公式.
(2)由${S}_{n}=-{n}^{2}+5n$=-(n-$\frac{5}{2}$)2+$\frac{25}{4}$,能求出Sn的最大值.
解答 解:(1)設(shè)等差數(shù)列{an}中首項為a1,公差為d.
因為a7=-8,a17=-28,
所以$\left\{\begin{array}{l}{{a}_{1}+6d=-8}\\{{a}_{1}+16d=-28}\end{array}\right.$,
解得a1=4,d=-2,
所以an=a1+(n-1)d=-2n+6.
(2)由(1)可得${S}_{n}=-{n}^{2}+5n$=-(n-$\frac{5}{2}$)2+$\frac{25}{4}$,
所以當(dāng)n=2或n=3時,Sn取得最大值.
(Sn)max=-22+2×5=-32+3×5=6.
點(diǎn)評 本題考查等差數(shù)列的通項公式的求法,考查等差數(shù)列的前n項和的最大值的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意等差數(shù)列的性質(zhì)的合理運(yùn)用.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 將圖象上的每一點(diǎn)橫坐標(biāo)縮短到原來的$\frac{1}{2}$而縱坐標(biāo)不變 | |
B. | 沿x向左平移$\frac{π}{2}$個單位,再把得圖象上的每一點(diǎn)橫坐標(biāo)伸長到原來的2而縱坐標(biāo)不變 | |
C. | 先把圖象上的每一點(diǎn)橫坐標(biāo)縮短到原來的$\frac{1}{2}$而縱坐標(biāo)不變,再將所得圖象沿x向右平移$\frac{π}{4}$個單位 | |
D. | 先把圖象上的每一點(diǎn)橫坐標(biāo)縮短到原來的$\frac{1}{2}$而縱坐標(biāo)不變,再將所得圖象沿x向左平移$\frac{π}{2}$個單位 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(1)<ef(0),f(2017)>e2017f(0) | B. | f(1)>ef(0),f(2017)>e2017f(0) | ||
C. | f(1)>ef(0),f(2017)<e2017f(0) | D. | f(1)<ef(0),f(2017)<e2017f(0) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0.6 | B. | 0.48 | C. | 0.75 | D. | 0.56 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 30° | B. | 60° | C. | 120° | D. | 150° |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com