14.兩人打靶,甲擊中目標的概率為0.8,乙擊中目標的概率為0.7,若兩人同時射擊一目標,則他們都擊中目標的概率是(  )
A.0.6B.0.48C.0.75D.0.56

分析 設A表示“甲擊中目標”,B表示“乙擊中目標”,他們都擊中目標的概率是P(AB)=P(A)P(B),由此能求出結果.

解答 解:設A表示“甲擊中目標”,B表示“乙擊中目標”,
兩人同時射擊一目標,
P(A)=0.8,P(B)=0.7,
∴他們都擊中目標的概率是P(AB)=P(A)P(B)=0.8×0.7=0.56.
故選:D.

點評 本題考查概率的求法,是基礎題,解題時要認真審題,注意相互獨立事件概率計算公式的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

4.設數(shù)列{an}的前n項和為Sn,已知a1=2,a2=8,Sn+1+4Sn-1=5Sn(n≥2),Tn是數(shù)列{log2an}的前n項和Tn
(1)求數(shù)列{an}的通項公式;
(2)求Tn
(3)求滿足$(1-\frac{1}{T_2})(1-\frac{1}{T_3})…(1-\frac{1}{T_n})>\frac{1011}{2014}$的最大正整數(shù)n的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.等差數(shù)列{an}中,已知a7=-8,a17=-28.
(1)求數(shù)列{an}的通項公式;  
(2)求Sn的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知數(shù)列{an}和{bn}滿足a1=2,b1=1,an+1=2an(n∈N*),b1+$\frac{1}{2}$b2+$\frac{1}{3}$b3+…+$\frac{1}{_{n}}$=bn+1-1(n∈N*).
(Ⅰ)求an與bn;
(Ⅱ)記數(shù)列{anbn}的前n項和為Tn,求Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知α為第二象限的角,sinα=$\frac{1}{2}$,β為第一象限的角,cosβ=$\frac{3}{5}$. 則tan(2α-β)的值為( 。
A.$\frac{{48+25\sqrt{3}}}{39}$B.$\frac{{48-25\sqrt{3}}}{39}$C.$-\frac{{48+25\sqrt{3}}}{39}$D.$-\frac{{48-25\sqrt{3}}}{39}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.下列說法正確的是( 。
A.“若a>1,則a2>1”的否命題是“若a>1,則a2≤1”
B.在△ABC中,“A>B”是“sinA>sinB”必要不充分條件
C.“若tanα≠$\sqrt{3}$,則α≠$\frac{π}{3}$”是真命題
D.?x0∈(-∞,0)使得3x0<4x0成立

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知函數(shù)f(x)=$\left\{\begin{array}{l}a{x^2}+3,x≥0\\({a+2}){e^{ax}},x<0\end{array}$為R上的單調函數(shù),則實數(shù)a的取值范圍是( 。
A.[-1,0)B.(0,1]C.(-2,0)D.(-∞,-2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知函數(shù)f(x)=x2eax,x∈R,其中e=2.71828…,常數(shù)a∈R
(1)討論f(x)的單調性;
(2)若對于任意的a>0都有$f(x)≤{f^'}(x)+\frac{{{x^2}+ax+{a^2}+1}}{a}{e^{ax}}$成立,求實數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.如圖,長方體ABCD-A1B1C1D1中,AB=AD,點P為DD1的中點.
(1)求證:直線BD1∥平面PAC;
(2)求證:平面PAC⊥平面BDD1

查看答案和解析>>

同步練習冊答案