14.($\sqrt{3}$-2x)7的展開式中,x3的系數(shù)是-2520(用數(shù)字作答).

分析 利用($\sqrt{3}$-2x)7展開式的通項(xiàng)公式,求出展開式中x3的系數(shù).

解答 解:($\sqrt{3}$-2x)7的展開式中,通項(xiàng)公式為
Tr+1=${C}_{7}^{r}$•${(\sqrt{3})}^{7-r}$•(-2x)r=${C}_{7}^{r}$•${(\sqrt{3})}^{7-r}$•(-2)r•xr,
令r=3,得展開式中x3的系數(shù)是
${C}_{7}^{3}$•${(\sqrt{3})}^{4}$•(-2)3=35×9×(-8)=-2520.
故答案為:-2520.

點(diǎn)評(píng) 本題考查了二項(xiàng)式展開式的通項(xiàng)公式應(yīng)用問(wèn)題,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.若二次函數(shù)f(x)=m2x2+nx+2的圖象與x軸有交點(diǎn),則雙曲線$\frac{x^2}{m^2}-\frac{y^2}{n^2}=1$(m>0,n>0)離心率e的取值范圍為( 。
A.(1,3]B.[3,+∞)C.$(1,\frac{{3\sqrt{2}}}{4}]$D.$[\frac{{3\sqrt{2}}}{4},+∞)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.下列有關(guān)結(jié)論正確的個(gè)數(shù)為(  )
①小趙、小錢、小孫、小李到4個(gè)景點(diǎn)旅游,每人只去一個(gè)景點(diǎn),設(shè)事件A=“4個(gè)人去的景點(diǎn)不相同”,事件B=“小趙獨(dú)自去一個(gè)景點(diǎn)”,則$P=({A|B})=\frac{2}{9}$;
②設(shè)函數(shù)f(x)存在導(dǎo)數(shù)且滿足$\lim_{△x→∞}\frac{{f(2)-f({2-3△x})}}{3△x}=-1$,則曲線y=f(x)在點(diǎn)(2,f(2))處的切線斜率為-1;
③設(shè)隨機(jī)變量ξ服從正態(tài)分布N(μ,7),若P(ξ<2)=P(ξ>4),則μ與Dξ的值分別為μ=3,Dξ=7.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.定義運(yùn)算$|{\begin{array}{l}a&b\\ c&d\end{array}}|=ad-bc$,若$z=|{\begin{array}{l}1&2\\ i&{i^4}\end{array}}|$(i為虛數(shù)單位),則復(fù)數(shù)$\bar z$在復(fù)平面上對(duì)應(yīng)的點(diǎn)位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.若實(shí)數(shù)a,b,c滿足2a=$\frac{1}{a}$,log2b=$\frac{1}$,lnc=$\frac{1}{c}$,則( 。
A.a<c<bB.a<b<cC.b<c<aD.c<b<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.在四邊形ABCD中,∠ADC=∠BCD=120°,AD=DC=2CB=1,則$\overrightarrow{AB}$•$\overrightarrow{AC}$=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.設(shè)函數(shù)f(x)的定義域?yàn)镈,如果存在正實(shí)數(shù)k,使得對(duì)于任意x∈D,都有x+k∈D.且f(x+k)>f(x)恒成立,則稱函數(shù)f(x)為D上的“k的型增函數(shù)”,己知f(x)是定義在R上的奇函數(shù).且在x>0時(shí).f(x)=|x-a|-2a,若f(x)為R上的“2017的型增函數(shù)”,則實(shí)數(shù)a的取值范圍是(-∞,$\frac{2017}{6}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知復(fù)數(shù)z滿足:|z|=1+3i-z,求$\frac{3+4i}{Z}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.設(shè)函數(shù)f(x)=sin($\frac{πx}{4}$-$\frac{π}{6}$)-2cos2$\frac{πx}{8}$+1.
(Ⅰ)求函數(shù)y=f(x)的最小正周期,并求出函數(shù)y=f(x)對(duì)稱中心的坐標(biāo);
(Ⅱ)求函數(shù)y=f(x)在 x∈[$\frac{2}{3}$,2]時(shí)的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案