相關(guān)習(xí)題
 0  212887  212895  212901  212905  212911  212913  212917  212923  212925  212931  212937  212941  212943  212947  212953  212955  212961  212965  212967  212971  212973  212977  212979  212981  212982  212983  212985  212986  212987  212989  212991  212995  212997  213001  213003  213007  213013  213015  213021  213025  213027  213031  213037  213043  213045  213051  213055  213057  213063  213067  213073  213081  266669 

科目: 來(lái)源: 題型:

已知函數(shù)f(x)=|x-2|
(1)解不等式xf(x)+3>0;
(2)對(duì)于任意的x∈(-3,3),不等式f(x)<m-|x|恒成立,求m的取值范圍.

查看答案和解析>>

科目: 來(lái)源: 題型:

已知函數(shù)f(x)=
1+1nx
x

(1)求f(x)的最大值;
(2)若對(duì)所有x≥1都有f(x)≥
k
x+1
,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目: 來(lái)源: 題型:

已知函數(shù)f(x)=ax2+bx+c(a>0,b,c∈R),F(xiàn)(x)=
f(x),      x≥0
-f(-x),   x<0
,
(Ⅰ)若f(x)在x=-1處取得最小值為0,且f(0)=1,求F(-1)+F(2)的值;
(Ⅱ)若a=1,c=0,且|f(x)|≤1對(duì)x∈[0,1]恒成立,求b的取值范圍;
(Ⅲ)若a=1,b=-2,c=0,且y=F(x)與y=-t的圖象在閉區(qū)間[-1,t]上恰有一個(gè)公共點(diǎn),求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目: 來(lái)源: 題型:

已知圓心為C的圓經(jīng)過(guò)點(diǎn)A(-1,1)和B(-2,-2),且圓心在直線l:x+y-1=0上.
(1)求圓心為C的圓的標(biāo)準(zhǔn)方程;
(2)設(shè)點(diǎn)P在圓C上,點(diǎn)Q在直線x-y+5=0上,求PQ的最小值;
(3)若直線kx-y+5=0被圓C所截得弦長(zhǎng)為8,求k的值.

查看答案和解析>>

科目: 來(lái)源: 題型:

記者在街上隨機(jī)抽取10人調(diào)查其在一個(gè)月內(nèi)接到的打擾性短信息次數(shù),得統(tǒng)計(jì)的莖葉圖如下:
(Ⅰ)計(jì)算樣本的平均數(shù)及方差;
(Ⅱ)在這10個(gè)樣本中,現(xiàn)從低于20次的人中隨機(jī)抽取2人,求2人中至少有1人接到打擾性短信息低于10次的概率.

查看答案和解析>>

科目: 來(lái)源: 題型:

已知函數(shù)f(x)=ax+x2-xlna(a>0且a≠1),若存在x1、x2∈[-1,1],使得|f(x1)-f(x2)|≥e-1,求a的取值范圍.

查看答案和解析>>

科目: 來(lái)源: 題型:

已知圓C:x2+y2+Dx-6y+1=0上有兩點(diǎn)P、Q關(guān)于直線x-y+4=0對(duì)稱.
(1)求圓C的半徑;
(2)若OP⊥OQ,O為坐標(biāo)原點(diǎn),求PQ方程;
(3)直線l:(2m-1)x-(m-1)y+8m-6=0被圓C截得弦長(zhǎng)最短時(shí),求m的值.

查看答案和解析>>

科目: 來(lái)源: 題型:

焦點(diǎn)在x軸上的雙曲線C的一條漸近線L的方程為x+2y=0,若定點(diǎn)A(3,0)到雙曲線C上的動(dòng)點(diǎn)P的最小距離為1,求雙曲線C的方程及P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目: 來(lái)源: 題型:

已知函數(shù)f(x)=3x,且f(a+2)=18,g(x)=3ax-4x的定義域?yàn)閇0,1].
(1)求g(x)的解析式;
(2)求g(x)的值域;
(3)是否存在實(shí)數(shù)t,若對(duì)任意的x1∈[0,1],都存在x2∈[t,t+1]使得g(x1)=f(x2)-3成立,若存在求出t的值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目: 來(lái)源: 題型:

某班有6名班干部,其中男生4人,女生2人,任選3人參加學(xué)校的義務(wù)勞動(dòng).
(1)求男生甲或女生乙被選中的概率;
(2)設(shè)“男生甲被選中”為事件A,“女生乙被選中”為事件B,求P(A)和P(B|A).

查看答案和解析>>

同步練習(xí)冊(cè)答案