相關(guān)習(xí)題
 0  229713  229721  229727  229731  229737  229739  229743  229749  229751  229757  229763  229767  229769  229773  229779  229781  229787  229791  229793  229797  229799  229803  229805  229807  229808  229809  229811  229812  229813  229815  229817  229821  229823  229827  229829  229833  229839  229841  229847  229851  229853  229857  229863  229869  229871  229877  229881  229883  229889  229893  229899  229907  266669 

科目: 來源: 題型:解答題

16.已知命題P:方程x2+mx+1=0有兩個不等的實數(shù)根,命題q:方程4x2+4(m-2)x+1=0無實數(shù)根.若p∧q為假,若p∨q為真,求m的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

15.設(shè)$\overrightarrow{a}$,$\overrightarrow$是二個不共線向量,知$\overrightarrow{AB}$=2$\overrightarrow{a}$-8$\overrightarrow$,$\overrightarrow{CB}$=$\overrightarrow{a}$+3$\overrightarrow$,$\overrightarrow{CD}$=2$\overrightarrow{a}$-$\overrightarrow$.
(1)證明:A、B、D三點共線;
(2)若$\overrightarrow{BF}$=4$\overrightarrow{a}$-k$\overrightarrow$,且B、D、F三點共線,求k的值.

查看答案和解析>>

科目: 來源: 題型:填空題

14.曲線y=4x-x3在點(1,3)處的切線的傾斜角是$\frac{π}{4}$.

查看答案和解析>>

科目: 來源: 題型:填空題

13.過拋物線y2=2x的焦點F作直線交拋物線于A(x1,y1)、B(x2,y2)兩點,若x1+x2=4,則|AB|=5.

查看答案和解析>>

科目: 來源: 題型:選擇題

12.已知P是拋物線y2=8x上的一個動點,Q是圓(x-3)2+(y-1)2=1上的一個動點,N(2,0)是一個定點,則|PQ|+|PN|的最小值為( 。
A.3B.4C.5D.$\sqrt{2}$+1

查看答案和解析>>

科目: 來源: 題型:解答題

11.在底面是矩形的四棱錐P-ABCD中,PA⊥平面ABCD,PA=AB=1,BC=2,E是PD的中點.(1)求證:平面PDC⊥平面PAD;
(2)求二面角E-AC-D的余弦值;
(3)求直線CP與平面AEC所成角的正弦值.

查看答案和解析>>

科目: 來源: 題型:選擇題

10.已知△ABC中,c=$\sqrt{2}$,a=4,B=135°,則b等于( 。
A.10B.$\sqrt{10}$C.26D.$\sqrt{26}$

查看答案和解析>>

科目: 來源: 題型:解答題

9.已知正項數(shù)列{an}的前n項和Sn滿足:Sn2-(n2+n-1)Sn-(n2+n)=0,
(Ⅰ)求S1和S2的值;     
(Ⅱ)求{an}的通項公式an;
(Ⅲ)若令bn=$\frac{n+1}{{{{(n+2)}^2}{a_n}^2}}$,設(shè)數(shù)列{bn}的前n項和為Tn.求證:$\frac{1}{18}$≤Tn<$\frac{5}{64}$.

查看答案和解析>>

科目: 來源: 題型:解答題

8.已知數(shù)列{an}的通項公式an=2n,設(shè)數(shù)列{bn}滿足b1=$\frac{1}{2}$,$\frac{1}{b_n}$-$\frac{1}{{{b_{n-1}}}}$=1(n∈N*,n≥2)
(Ⅰ)求數(shù)列{bn}的通項公式;
(Ⅱ)設(shè)cn=an($\frac{2}{b_n}$-1),求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目: 來源: 題型:解答題

7.已知函數(shù)f(x)=1+2$\sqrt{3}$sinxcosx-2sin2x,x∈R.
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若把f(x)向右平移$\frac{π}{6}$個單位得到函數(shù)g(x),求g(x)在區(qū)間[-$\frac{π}{2}$,0]上的最小值和最大值.

查看答案和解析>>

同步練習(xí)冊答案