相關(guān)習(xí)題
 0  230292  230300  230306  230310  230316  230318  230322  230328  230330  230336  230342  230346  230348  230352  230358  230360  230366  230370  230372  230376  230378  230382  230384  230386  230387  230388  230390  230391  230392  230394  230396  230400  230402  230406  230408  230412  230418  230420  230426  230430  230432  230436  230442  230448  230450  230456  230460  230462  230468  230472  230478  230486  266669 

科目: 來源: 題型:填空題

15.球面上四點A,B,C,D滿足AB=1,BC=$\sqrt{3}$,AC=2,若三棱錐D-ABC體積的最大值為$\frac{{\sqrt{3}}}{2}$,則這個球體的表面積為$\frac{100π}{9}$.

查看答案和解析>>

科目: 來源: 題型:填空題

14.某苗圃對一批即將出售的樹苗進行了抽樣統(tǒng)計,得到苗高(單位:cm)的頻率分布直方圖如圖.若苗高屬于區(qū)間[100,104)的有4株,則苗高屬于區(qū)間[112,116]的有11株.

查看答案和解析>>

科目: 來源: 題型:填空題

13.已知向量$\overrightarrow a$,$\overrightarrow b$滿足|$\overrightarrow a|=1$,|$\overrightarrow a$-$\overrightarrow b$|=$\sqrt{7}$,$\overrightarrow a$,$\overrightarrow b$的夾角為$\frac{2π}{3}$,則|$\overrightarrow b$|=2.

查看答案和解析>>

科目: 來源: 題型:選擇題

12.已知雙曲線C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的左、右頂點為A1,A2,拋物線E以坐標(biāo)原點為頂點,以A2為焦點.若雙曲線C的一條漸近線與拋物線E及其準(zhǔn)線分別交于點M,N,若$\overrightarrow{M{A_2}}⊥\overrightarrow{{A_1}{A_2}}$,∠MA1N=135°,則雙曲線C的離心率為(  )
A.$\sqrt{5}$B.2C.$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

科目: 來源: 題型:選擇題

11.把函數(shù)f(x)=cos(2x+φ)的圖象向左平移$\frac{π}{6}$個單位后,所得圖象關(guān)于y軸對稱,則φ可以為( 。
A.$-\frac{π}{6}$B.$-\frac{π}{3}$C.$\frac{π}{6}$D.$\frac{π}{3}$

查看答案和解析>>

科目: 來源: 題型:選擇題

10.一個幾何體的三視圖如圖所示,則該幾何體的體積等于(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.1

查看答案和解析>>

科目: 來源: 題型:選擇題

9.已知命題p:a2≥0(a∈R),命題q:函數(shù)f(x)=x2-2x在區(qū)間[$\begin{array}{l}{0,+∞}\end{array}$)上單調(diào)遞增,則下列命題中為真命題的是( 。
A.p∧qB.p∨qC.(?p)∧(?q)D.(?p)∨q

查看答案和解析>>

科目: 來源: 題型:選擇題

8.已知數(shù)列{an}中,a1=1,且an+1=2an+1,則a4=( 。
A.7B.9C.15D.17

查看答案和解析>>

科目: 來源: 題型:選擇題

7.若tanα=2,則sin2α=( 。
A.$-\frac{2}{5}$B.$-\frac{4}{5}$C.$\frac{2}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目: 來源: 題型:解答題

6.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的右焦點為F2(1,0),點P(1,$\frac{{\sqrt{2}}}{2}$)在橢圓C上.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過坐標(biāo)原點O的兩條直線EF,MN分別與橢圓C交于E,F(xiàn),M,N四點,且直線OE,OM的斜率之積為-$\frac{1}{2}$,求證:四邊形EMFN的面積為定值.

查看答案和解析>>

同步練習(xí)冊答案