相關習題
 0  231261  231269  231275  231279  231285  231287  231291  231297  231299  231305  231311  231315  231317  231321  231327  231329  231335  231339  231341  231345  231347  231351  231353  231355  231356  231357  231359  231360  231361  231363  231365  231369  231371  231375  231377  231381  231387  231389  231395  231399  231401  231405  231411  231417  231419  231425  231429  231431  231437  231441  231447  231455  266669 

科目: 來源: 題型:選擇題

8.已知曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=2cosθ}\\{y=1+2sinθ}\end{array}\right.$ (θ為參數(shù)),則曲線的直角坐標方程為( 。
A.(x-1)2+y2=2B.(x-1)2+y2=4C.x2+(y-1)2=2D.x2+(y-1)2=4

查看答案和解析>>

科目: 來源: 題型:選擇題

7.已知函數(shù)f(x)=log${\;}_{\frac{1}{2}}}$($\sqrt{{x^2}+1}$+bx),則下列說法正確的是(  )
A.若函數(shù)f(x)是定義在R上的偶函數(shù),則b=±1
B.若函數(shù)f(x)是定義在R上的奇函數(shù),則b=1
C.若b=-1,則函數(shù)f(x)是定義在R上的增函數(shù)
D.若b=-1,則函數(shù)f(x)是定義在R上的減函數(shù)

查看答案和解析>>

科目: 來源: 題型:填空題

6.如圖,棱長為3的正方體的頂點A在平α上,三條棱AB、AC、AD都在平面α的同側.若頂點B,C到平面α的距離分別為1,$\sqrt{2}$.建立如圖所示的空間直角坐標系,設平面α的一個法向量為(x0,y0,z0),若x0=1,則y0=$\sqrt{2}$,z0=$\sqrt{6}$,且頂點D到平面α的距離是$\sqrt{6}$.

查看答案和解析>>

科目: 來源: 題型:填空題

5.圓心坐標為(1,2),且與直線2x+y+1=0相切的圓的方程為(x-1)2+(y-2)2=5.

查看答案和解析>>

科目: 來源: 題型:解答題

4.已知函數(shù)f(x)=$\frac{1}{2}$|1-2x|+|2x+1|
(Ⅰ)求函數(shù)f(x)的最小值m;
(Ⅱ)若正實數(shù)a,b滿足$\frac{1}{a}$+$\frac{2}$=m,且f(x)≤a+b對任意的正實數(shù)a,b恒成立,求x的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

3.已知a>0,b>0且a+b=1.
(Ⅰ)求$\frac{1}{a}$+$\frac{4}$的最小值;
(Ⅱ)若$\frac{1}{a}$+$\frac{4}$≥|2x-1|-|x+1|恒成立,求x的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

2.設函數(shù)f(x)=$\sqrt{x-3}$+$\sqrt{12-x}$的最大值M.
(1)求實數(shù)M的值;
(2)求關于x的不等式|x-$\sqrt{2}}$|+|x+2$\sqrt{2}}$|≤M的解集.

查看答案和解析>>

科目: 來源: 題型:解答題

1.已知函數(shù)f(x)=|x-2|+|x-a|.
(Ⅰ)若a=-2,解不等式f(x)≥6;
(Ⅱ)如果?x∈R,f(x)≥4,求a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:選擇題

20.參數(shù)方程$\left\{\begin{array}{l}{x=|cos\frac{θ}{2}+sin\frac{θ}{2}|}\\{y=\frac{1}{2}(1+sinθ)}\end{array}\right.$(θ為參數(shù),0≤θ<2π)表示( 。
A.雙曲線的一支,這支過點(1,$\frac{1}{2}$)B.拋物線的一部分,這部分過點(1,$\frac{1}{2}$)
C.雙曲線的一支,這支過點(-1,$\frac{1}{2}$)D.拋物線的一部分,這部分過點(-1,$\frac{1}{2}$)

查看答案和解析>>

科目: 來源: 題型:填空題

19.在平面直角坐標系xOy中,則過橢圓$\left\{\begin{array}{l}{x=5cosφ}\\{y=3sinφ}\end{array}\right.$ (φ為參數(shù))的右焦點且與直線$\left\{\begin{array}{l}{x=4-2t}\\{y=3-t}\end{array}\right.$(t為參數(shù))平行的直線被橢圓截得的弦長為$\frac{90\sqrt{14}}{61}$.

查看答案和解析>>

同步練習冊答案