相關(guān)習(xí)題
 0  231350  231358  231364  231368  231374  231376  231380  231386  231388  231394  231400  231404  231406  231410  231416  231418  231424  231428  231430  231434  231436  231440  231442  231444  231445  231446  231448  231449  231450  231452  231454  231458  231460  231464  231466  231470  231476  231478  231484  231488  231490  231494  231500  231506  231508  231514  231518  231520  231526  231530  231536  231544  266669 

科目: 來源: 題型:解答題

7.設(shè)函數(shù)f(x)=ex+ln(x+1)-ax.
(Ⅰ)當(dāng)a=2時,證明:函數(shù)f(x)在定義域內(nèi)單調(diào)遞增;
(Ⅱ)當(dāng)x≥0時,f(x)≥cosx恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

6.如圖所示,△ABC中,AC=1,AB=2,∠ACB=$\frac{π}{2}$,P為AB的中點,且△ABC與正方形BCDE所在平面互相垂直.
(1)求證:AD∥平面PCE;
(2)求二面角P-CE-B的余弦值.

查看答案和解析>>

科目: 來源: 題型:選擇題

5.如圖,點D在AB上,E在AC上.且∠B=∠C,那么補充下列一個條件后仍無法判定△ABE≌△ACD的是( 。
A.AE=ADB.∠AEB=∠ADCC.CE=BDD.AB=AC

查看答案和解析>>

科目: 來源: 題型:選擇題

4.下列命題中,正確的是(  )
A.有兩邊及一邊的對角對應(yīng)相等的兩個三角形全等
B.兩邊相等的兩直角三角形全等
C.有兩個角及第三個角的對邊對應(yīng)相等的兩個三角形全等
D.有兩個角及一邊相等的兩個三角形全等

查看答案和解析>>

科目: 來源: 題型:解答題

3.已知函數(shù)f(x)=|x+1|+|x-m|(m>0).
(1)若f(x)≥5恒成立,求m的取值范圍;
(2)在(1)的條件下,記m的最小值是m0,若$\frac{1}{{a}^{2}}$+$\frac{4}{^{2}}$+$\frac{9}{{c}^{2}}$=m0,則當(dāng)a,b,c取何值時,a2+4b2+9c2取得最小值,并求出該最小值.

查看答案和解析>>

科目: 來源: 題型:解答題

2.已知AB、CD為梯形ABCD的底,對角線AC、BD的交點為O,且AB=8,CD=6,BD=15,求OB、OD的長.

查看答案和解析>>

科目: 來源: 題型:解答題

1.已知動圓過點M(2,0),且被y軸截得的線段長為4,記動圓圓心的軌跡為曲線C.
(1)求曲線C的方程;
(2)問:x軸上是否存在一定點P,使得對于曲線C上的任意兩點A和B,當(dāng)$\overrightarrow{AM}$=λ$\overrightarrow{MB}$(λ∈R)時,恒有△PAM與△PBM的面積之比等于$\frac{|PA|}{|PB|}$?若存在,則求P點的坐標(biāo),否則說明理由.

查看答案和解析>>

科目: 來源: 題型:解答題

20.已知拋物線C的頂點在坐標(biāo)原點且關(guān)于x軸對稱,直線x-y+1=0與C有唯一的公共點.
(1)求拋物線C的方程;
(2)已知直線l與C交于A,B兩點,點M(1,t)在線段AB上,又點P的坐標(biāo)為(1,2),若△PAM與△PBM的面積之比等于$\frac{|PA|}{|PB|}$,問:l的斜率是否為定值?若是則求此定值,否則說明理由.

查看答案和解析>>

科目: 來源: 題型:解答題

19.已知點A(-$\sqrt{2}$,0)和圓B:(x-$\sqrt{2}$)2+y2=16,點Q在圓B上,線段AQ的垂直平分線角BQ于點P.
(1)求點P的軌跡C的方程;
(2)軌跡C上是否存在直線2x+y+1=0對稱的兩點,若存在,設(shè)這兩個點分別為S,T,求直線ST的方程,若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:解答題

18.如圖,點A,B分別在射線l1:y=2x(x≥0),l2:y=-2x(x≥0)上運動,且S△AOB=4.
(1)求x1•x2;
(2)求線段AB的中點M的軌跡方程;
(3)判定中點M到兩射線的距離積是否是為定值,若是則找出該值并證明;若不是定值說明理由.

查看答案和解析>>

同步練習(xí)冊答案