相關習題
 0  233018  233026  233032  233036  233042  233044  233048  233054  233056  233062  233068  233072  233074  233078  233084  233086  233092  233096  233098  233102  233104  233108  233110  233112  233113  233114  233116  233117  233118  233120  233122  233126  233128  233132  233134  233138  233144  233146  233152  233156  233158  233162  233168  233174  233176  233182  233186  233188  233194  233198  233204  233212  266669 

科目: 來源: 題型:選擇題

9.復數(shù)i+2i2(i為虛數(shù)單位)在復平面內(nèi)對應點的坐標是( 。
A.(1,2)B.(1,-2)C.(2,1)D.(-2,1)

查看答案和解析>>

科目: 來源: 題型:選擇題

8.如圖所示,四棱錐S-ABCD的底面是邊長為4$\sqrt{2}$的正方形,且SA=SB=SC=SD=4$\sqrt{5}$,則過點A,B,C,D,S的球的體積為(  )
A.$\frac{125}{3}π$B.$\frac{250}{3}$πC.$\frac{500}{3}π$D.$\frac{550}{3}π$

查看答案和解析>>

科目: 來源: 題型:解答題

7.已知函數(shù)f(x)=|x+m|-|5-x|(m∈R)
(1)當m=3時,求不等式f(x)>6的解集;
(2)若不等式f(x)≤10對任意實數(shù)x恒成立,求m的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

6.已知曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=6cosθ}\\{y=4sinθ}\end{array}\right.$(θ為參數(shù)),在同一平面直角坐標系中,將曲線C上的點按坐標變換$\left\{\begin{array}{l}{x′=\frac{1}{3}x}\\{y′=\frac{1}{4}y}\end{array}\right.$得到曲線C′.
(1)求曲線C′的普通方程;
(2)若點A在曲線C′上,點D(1,3),當點A在曲線C′上運動時,求AD中點P的軌跡方程.

查看答案和解析>>

科目: 來源: 題型:解答題

5.已知函數(shù)f(x)=xlnx,g(x)=$\frac{1}{8}$x2-x.
(1)求f(x)的單調(diào)區(qū)間和極值點;
(2)是否存在實數(shù)m,使得函數(shù)h(x)=$\frac{3f(x)}{4x}$+m+g(x)有三個不同的零點?若存在,求出的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:選擇題

4.已知a=4${\;}^{\frac{1}{3}}$,b=log${\;}_{\frac{1}{4}}$$\frac{1}{3}$,c=log3$\frac{1}{4}$,則( 。
A.a>b>cB.b>c>aC.c>b>aD.b>a>c

查看答案和解析>>

科目: 來源: 題型:選擇題

3.已知復數(shù)z=$\frac{2-i}{x-i}$為純虛數(shù),其中i為虛數(shù)單位,則實數(shù)x的值為( 。
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.-3D.$\frac{1}{3}$

查看答案和解析>>

科目: 來源: 題型:選擇題

2.已知點P為△ABC所在平面外一點,點D、E、F分別在直線PA、PB、PC上,平面DEF∥平面ABC,且$\frac{PD}{DA}$=$\frac{PE}{EB}$=$\frac{PF}{FC}$=$\frac{2}{3}$,則$\frac{{S}_{△DEF}}{{S}_{△ABC}}$=(  )
A.$\frac{4}{9}$B.$\frac{4}{25}$C.$\frac{2}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目: 來源: 題型:填空題

1.已知球上四點A,B,C,D,直角△BCD直角邊BC=3,DC=4,AC⊥平面BCD,AC=$\sqrt{11}$,則該球的體積為36π.

查看答案和解析>>

科目: 來源: 題型:填空題

20.已知O是坐標原點,點A(-$\frac{1}{3}$,2),若點M(x,y)為平面區(qū)域$\left\{\begin{array}{l}{y≤2x}\\{x+y≤1}\\{y≥-1}\end{array}\right.$上的一個動點,則|$\overrightarrow{OA}$+$\overrightarrow{OM}$|的最小值是1.

查看答案和解析>>

同步練習冊答案