相關(guān)習(xí)題
 0  233318  233326  233332  233336  233342  233344  233348  233354  233356  233362  233368  233372  233374  233378  233384  233386  233392  233396  233398  233402  233404  233408  233410  233412  233413  233414  233416  233417  233418  233420  233422  233426  233428  233432  233434  233438  233444  233446  233452  233456  233458  233462  233468  233474  233476  233482  233486  233488  233494  233498  233504  233512  266669 

科目: 來(lái)源: 題型:解答題

18.已知命題p:“$\frac{{2{x^2}}}{m}$+$\frac{y^2}{m-1}$=1是焦點(diǎn)在x軸上的橢圓的標(biāo)準(zhǔn)方程”,命題q:“不等式組$\left\{{\begin{array}{l}{y≥0}\\{y≤x}\\{y≤-x+1}\\{y≤-2x+m}\end{array}}\right.$所表示的區(qū)域是三角形”.若p∨q為真命題,p∧q為假命題,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

17.已知數(shù)列{an}滿足a1=10,an+1-an=n(n∈N*),則$\frac{a_n}{n}$取最小值時(shí)n=4或5.

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

16.已知點(diǎn)(x,y)滿足不等式組$\left\{{\begin{array}{l}{x-4y+3≤0}\\{2x-y-1≥0}\\{3x+2y-19≤0}\end{array}}\right.$,則$\frac{y}{x}$的最大值為( 。
A.1B.$\frac{2}{5}$C.$\frac{5}{2}$D.$\frac{5}{3}$

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

15.命題“數(shù)列{an}前n項(xiàng)和是Sn=An2+Bn+C的形式,則數(shù)列{an}為等差數(shù)列”的逆命題,否命題,逆否命題這三個(gè)命題中,真命題的個(gè)數(shù)為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

14.已知$\frac{1}{a-1}$,a+1,a2-1為等比數(shù)列,則a=(  )
A.0或-1B.-1C.0D.不存在

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

13.下列所給點(diǎn)中,在方程x2-xy+2y+1=0表示的曲線上的是(  )
A.(0,0)B.(1,-1)C.$(0,-\frac{1}{2})$D.(1,1)

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

12.已知函數(shù)f(x)=|x-1|-|2x+3|.
(I)解不等式f(x)>2;
(II)若關(guān)于x的不等式f(x)≤$\frac{3}{2}$a2-a的解集為R,求正數(shù)a的取值范圍.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

11.已知函數(shù)f(x)=lnx+$\frac{a}{x}$.
(1)討論函數(shù)f(x)的單調(diào)性;
(2)當(dāng)a=2時(shí),且函數(shù)f(x)滿足f(x1)=f(x2)(x1≠x2),求證x1+x2>4.
(參考公式:[ln(m-x)]'=$\frac{1}{x-m}$,m為常數(shù))

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

10.在平面直角坐標(biāo)系中,已知?jiǎng)狱c(diǎn)T到點(diǎn)A(-4,0),B(-1,0)的距離比為2.
(1)求動(dòng)點(diǎn)T的軌跡方程Γ;
(2)已知點(diǎn)P是直線l:y=x與曲線Γ在第一象限內(nèi)的交點(diǎn),過(guò)點(diǎn)P引兩條直線分別交曲線Γ于Q,R,且直線PQ,PR的傾斜角互補(bǔ),試判斷直線QR的斜率是否為定值,若是定值,請(qǐng)求出這個(gè)定值;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

9.已知數(shù)列{an}滿足a1=2,n(an+1-n-1)=(n+1)(an+n)(n∈N*).
(1)求證:數(shù)列{$\frac{a_n}{n}$}是等差數(shù)列,并求其通項(xiàng)公式;
(2)設(shè)bn=$\sqrt{2{a_n}}$-15,求數(shù)列{|bn|}的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊(cè)答案