相關(guān)習(xí)題
 0  233830  233838  233844  233848  233854  233856  233860  233866  233868  233874  233880  233884  233886  233890  233896  233898  233904  233908  233910  233914  233916  233920  233922  233924  233925  233926  233928  233929  233930  233932  233934  233938  233940  233944  233946  233950  233956  233958  233964  233968  233970  233974  233980  233986  233988  233994  233998  234000  234006  234010  234016  234024  266669 

科目: 來源: 題型:選擇題

5.將函數(shù)y=sin(4x-$\frac{π}{3}$)的圖象上各點(diǎn)的橫坐標(biāo)伸長為原來的2倍,再向左平移$\frac{π}{6}$個(gè)單位,得到的函數(shù)的圖象的一個(gè)對(duì)稱中心為( 。
A.($\frac{π}{2}$,0)B.($\frac{π}{4}$,0)C.($\frac{π}{9}$,0)D.($\frac{π}{16}$,0)

查看答案和解析>>

科目: 來源: 題型:解答題

4.現(xiàn)有l(wèi),2,3,4,5,6,7,8,9九個(gè)自然數(shù)
(1)從中一次性抽取3個(gè)數(shù),求這3個(gè)數(shù)之和是偶數(shù)的概率;
(2)做如下游戲:從中隨機(jī)抽取一個(gè)數(shù),若能被3整除則游戲停止;若不能被3整除,則放回后再隨機(jī)抽取一個(gè)數(shù),游戲繼續(xù),至多抽取5次,若5次抽取的數(shù)都不能被3整除,游戲也停止.設(shè)抽取的次數(shù)為X,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目: 來源: 題型:填空題

3.如圖所示,已知正方體(圖1)面對(duì)角線長為a,沿對(duì)角面將其切割成兩塊,拼成圖2所示的幾何體,那么拼成后的幾何體的全面積為$({2+\sqrt{2}}){a^2}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

2.$\int_0^{\frac{π}{2}}{sin2xdx}$的值是( 。
A.1B.-1C.2D.-2

查看答案和解析>>

科目: 來源: 題型:選擇題

1.命題“設(shè)$\overrightarrow a,\overrightarrow b$是向量,若$\overrightarrow a=-\overrightarrow b$,則$|{\overrightarrow a}|=|{\overrightarrow b}|$”的逆命題、逆否命題分別是( 。
A.真命題、真命題B.假命題、真命題C.真命題、假命題D.假命題、假命題

查看答案和解析>>

科目: 來源: 題型:選擇題

20.復(fù)數(shù)z滿足z•i=3-i,則在復(fù)平面內(nèi),其共軛復(fù)數(shù)$\overline{z}$對(duì)應(yīng)的點(diǎn)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目: 來源: 題型:選擇題

19.已知數(shù)列{an}的通項(xiàng)公式${a_n}={log_2}\frac{n}{n+1}(n∈{N^*})$,設(shè)其前n項(xiàng)和為Sn,則使Sn>-4成立的自然數(shù)n有( 。
A.最大值14B.最小值14C.最大值15D.最小值15

查看答案和解析>>

科目: 來源: 題型:選擇題

18.設(shè)集合A={0,1,2,3,4},B=$\left\{{\left.{x∈R|\frac{x-4}{x-1}≤0}\right\}}\right.$,則A∩B=( 。
A.{1,2,3,4}B.{2,3,4}C.{3,4}D.{x|1<x≤4}

查看答案和解析>>

科目: 來源: 題型:選擇題

17.已知函數(shù)$f(x)=2sin(\frac{π}{2}x+\frac{π}{3})$,則f(1)+f(2)+f(3)+…+f(2022)=( 。
A.1B.$-\sqrt{3}$C.0D.$1-\sqrt{3}$

查看答案和解析>>

科目: 來源: 題型:解答題

16.已知函數(shù)f(x)=lnx+$\frac{1}{4}$x2-$\frac{1}{2}$x
(1)判斷f(x)是否為定義域上的單調(diào)函數(shù),并說明理由
(2)設(shè)x∈(0,e],f(x)-mx≤0恒成立,求m的最小整數(shù)值.

查看答案和解析>>

同步練習(xí)冊(cè)答案