相關(guān)習題
 0  234369  234377  234383  234387  234393  234395  234399  234405  234407  234413  234419  234423  234425  234429  234435  234437  234443  234447  234449  234453  234455  234459  234461  234463  234464  234465  234467  234468  234469  234471  234473  234477  234479  234483  234485  234489  234495  234497  234503  234507  234509  234513  234519  234525  234527  234533  234537  234539  234545  234549  234555  234563  266669 

科目: 來源: 題型:解答題

19.已知集合A={-1,1},B={x|ax+1=0},若B⊆A,求實數(shù)a所有可能取值的集合.

查看答案和解析>>

科目: 來源: 題型:填空題

18.函數(shù)f(x)=3${\;}^{\sqrt{x-1}}$+$\sqrt{2-x}$,定義域為[1,2].

查看答案和解析>>

科目: 來源: 題型:選擇題

17.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}-4ax+3,(x<1)}\\{(2-3a)x+1,(x≥1)}\end{array}\right.$在R內(nèi)單調(diào)遞減,則a的取值范圍是( 。
A.(0,$\frac{1}{2}$]B.[$\frac{1}{2}$,$\frac{2}{3}$)C.($\frac{2}{3}$,1]D.[1,+∞)

查看答案和解析>>

科目: 來源: 題型:選擇題

16.已知函數(shù)f(x)=log3x,若f(x)=2,則x=( 。
A.9B.$\sqrt{3}$C.$\sqrt{2}$D.log32

查看答案和解析>>

科目: 來源: 題型:選擇題

15.下列函數(shù)是偶函數(shù)的是( 。
A.f(x)=x+$\frac{1}{x}$B.f(x)=$\frac{1}{{x}^{2}}$C.f(x)=x3-2xD.f(x)=x2,x∈[-1,1)

查看答案和解析>>

科目: 來源: 題型:選擇題

14.下列給出函數(shù)f(x)與g(x)的各組中,是同一個關(guān)于x的函數(shù)的是( 。
A.f(x)=x-1,g(x)=$\frac{{x}^{2}}{x}$-1B.f(x)=|x|,g(x)=($\sqrt{x}$)2
C.f(x)=x,g(x)=$\root{3}{{x}^{3}}$D.f(x)=1,g(x)=x0

查看答案和解析>>

科目: 來源: 題型:選擇題

13.下列命題正確的是( 。
A.很小的實數(shù)可以構(gòu)成集合
B.自然數(shù)集N中最小的數(shù)是1
C.集合{y|y=x2-1}與{(x,y)|y=x2-1}是同一個集合
D.空集是任何集合的子集

查看答案和解析>>

科目: 來源: 題型:解答題

12.已知$\overrightarrow{a}$=(x,0),$\overrightarrow$=(1,y),且($\overrightarrow{a}$+$\sqrt{3}$$\overrightarrow$)⊥($\overrightarrow{a}$-$\sqrt{3}$$\overrightarrow$).
(1)求點P(x,y)的軌跡C的方程;
(2)若直線y=kx+m(k≠0)與曲線C交于A,B兩點,D(0,-1),且|AD|=|DB|,試求實數(shù)m的取值范圍.

查看答案和解析>>

科目: 來源: 題型:填空題

11.已知f(x)=$\left\{\begin{array}{l}{|x|,x≤1}\\{2-x,x>1}\end{array}\right.$,若不等式f2(x)-mf(x)<0只有一個整數(shù)解,則實數(shù)m的取值范圍是(-2,-1]∪[1,2).

查看答案和解析>>

科目: 來源: 題型:填空題

10.已知函數(shù)f(x)=x+alnx,在x=1處的切線與直線x+2y=0垂直,函數(shù)g(x)=f(x)+$\frac{1}{2}{x^2}$-bx.
 (1)求實數(shù)a的值;
  (2)設x1,x2(x1<x2) 是函數(shù)g(x)的兩個極值點,記t=$\frac{x_1}{x_2}$,若b≥$\frac{13}{3}$,
①t的取值范圍;
②求g(x1)-g(x2) 的最小值.

查看答案和解析>>

同步練習冊答案