相關習題
 0  235321  235329  235335  235339  235345  235347  235351  235357  235359  235365  235371  235375  235377  235381  235387  235389  235395  235399  235401  235405  235407  235411  235413  235415  235416  235417  235419  235420  235421  235423  235425  235429  235431  235435  235437  235441  235447  235449  235455  235459  235461  235465  235471  235477  235479  235485  235489  235491  235497  235501  235507  235515  266669 

科目: 來源: 題型:解答題

8.△ABC的內角A,B,C的對邊分別為a,b,c,已知a≠b,cos2A-cos2B=$\sqrt{3}sinAcosA-\sqrt{3}sinBcosB$
(Ⅰ)求角C的大。
(Ⅱ)若$c=\sqrt{3}$,求△ABC的周長的取值范圍.

查看答案和解析>>

科目: 來源: 題型:填空題

7.數列|{an}滿足a1=8,且${a_{n+1}}-{a_n}={2^{n+1}}$(n∈N*),則數列|{an}的前n項和為2n+2+4n-4.

查看答案和解析>>

科目: 來源: 題型:選擇題

6.已知向量$\overrightarrow{a}$=(1,$\sqrt{3}$),$\overrightarrow$=($\sqrt{3}$,1),則$\overrightarrow{a}$與$\overrightarrow$夾角的大小為(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目: 來源: 題型:填空題

5.已知f(x)=$\left\{\begin{array}{l}{lnx,x>0}\\{{∫}_{x}^{0}(2t+2-{e}^{t})dt,x≤0}\end{array}\right.$,則函數h(x)=f(x)+1有2個零點.

查看答案和解析>>

科目: 來源: 題型:解答題

4.如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AC⊥BD交于點O,E為線段PC上的點,且AC⊥BE.
(1)求證:AC⊥DE;
(2)若BC∥AD,PA=6,BC=$\frac{1}{2}AD=\sqrt{2}$,AB=CD,求異面直線DE與PA所成的角.

查看答案和解析>>

科目: 來源: 題型:解答題

3.如圖,在五棱錐F-ABCDE中,平面AEF⊥平面ABCDE,AF=EF=1,AB=DE=2,BC=CD=3,且∠AFE=∠ABC=∠BCD=∠CDE=90°.
(1)已知點G在線段FD上,確定G的位置,使得AG∥平面BCF;
(2)點M,N分別在線段DE,BC上,若沿直線MN將四邊形MNCD向上翻折,D與F恰好重合,求直線BM與平面BEF所成角的正弦值.

查看答案和解析>>

科目: 來源: 題型:選擇題

2.如圖,在矩形ABCD中,AD=$\sqrt{5}$,AB=3,E、F分別為AB邊、CD邊上一點,且AE=DF=l,現(xiàn)將矩形ABCD沿EF折起,使得平面ADFE⊥平面BCFE,連接AB、CD,則所得三棱柱ABE-DCF的側面積比原矩形ABCD的面積大約多(取$\sqrt{5}$≈2.236)(  )
A.68%B.70%C.72%D.75%

查看答案和解析>>

科目: 來源: 題型:選擇題

1.若集合M={x∈N|x2-8x+7<0},N={x|$\frac{x}{3}$∉N},則M∩N等于( 。
A.{3,6}B.{4,5}C.{2,4,5}D.{2,4,5,7}

查看答案和解析>>

科目: 來源: 題型:選擇題

20.已知平面區(qū)域Ω:$\left\{{\begin{array}{l}{3x+4y-18≤0}\\{x≥2}\\{y≥0}\end{array}}$,夾在兩條斜率為-$\frac{3}{4}$的平行直線之間,且這兩條平行直線間的最短距離為m.若點P(x,y)∈Ω,且mx-y的最小值為p,$\frac{y}{x+m}$的最大值為q,則pq等于( 。
A.$\frac{27}{22}$B.$\frac{2}{5}$C.$\frac{27}{25}$D.0

查看答案和解析>>

科目: 來源: 題型:選擇題

19.設a>0且a≠1,函數f(x)=loga|x2-(a+$\frac{1}{a}})x+1}$)x+1|在[1,2]上是增函數,則a的取值范圍( 。
A.a≥2+$\sqrt{3}$B.0<a<2-$\sqrt{3}$C.a≥2+$\sqrt{3}$或0<a<1D.a≥2+$\sqrt{3}$或0<a<2-$\sqrt{3}$

查看答案和解析>>

同步練習冊答案