相關(guān)習題
 0  236178  236186  236192  236196  236202  236204  236208  236214  236216  236222  236228  236232  236234  236238  236244  236246  236252  236256  236258  236262  236264  236268  236270  236272  236273  236274  236276  236277  236278  236280  236282  236286  236288  236292  236294  236298  236304  236306  236312  236316  236318  236322  236328  236334  236336  236342  236346  236348  236354  236358  236364  236372  266669 

科目: 來源: 題型:解答題

3.如圖,已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的焦距為2$\sqrt{2}$,且經(jīng)過點(-2,0).過點D(0,-2)的斜率為k的直線l與橢圓交于A,B兩點,與x軸交于P點,點A關(guān)于x軸的對稱點C,直線BC交x軸于點Q.
(Ⅰ)求k的取值范圍;
(Ⅱ)試問:|OP|?|OQ|是否為定值?若是,求出定值;否則,說明理由.

查看答案和解析>>

科目: 來源: 題型:解答題

2.如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,PA⊥PC,底面ABCD為菱形,G為PC中點,E、F分別為AB、PB上一點,△BCE的面積為6$\sqrt{3},AB=4AE=4\sqrt{2},AC=4\sqrt{6}$,PB=4PF.
(1)求證:AC⊥DF;
(2)求證:EF∥平面BDG;
(3)求三棱錐B-CEF的體積.

查看答案和解析>>

科目: 來源: 題型:解答題

1.如圖,在三棱柱ABC-A1B1C1中,AC=BC,AA1⊥底面ABC,D是線段AB的中點,E是線段A1B1上任意一點,B1C∩BC1=O.
(1)求證:CD⊥平面ABB1A1;
(2)求證:OD∥平面AC1E.

查看答案和解析>>

科目: 來源: 題型:選擇題

20.在△ABC中,b=4,c=3,BC邊上的中線$m=\frac{{\sqrt{37}}}{2}$,則a=( 。
A.$2\sqrt{3}$B.$3\sqrt{2}$C.$\sqrt{15}$D.$\sqrt{13}$

查看答案和解析>>

科目: 來源: 題型:選擇題

19.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左焦點為F,過點F作雙曲線C的一條漸近線的垂線,垂足為H,點P在雙曲線上,且$\overrightarrow{FP}$=3$\overrightarrow{FH}$則雙曲線的離心率為( 。
A.$\sqrt{3}$B.2$\sqrt{3}$C.$\frac{\sqrt{13}}{2}$D.$\sqrt{13}$

查看答案和解析>>

科目: 來源: 題型:填空題

18.拋物線的頂點是橢圓$\frac{x^2}{25}+\frac{y^2}{16}=1$的中心,焦點是橢圓的右焦點,拋物線方程為y2=12x.

查看答案和解析>>

科目: 來源: 題型:選擇題

17.已知F1,F(xiàn)2分別是雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點,點P在雙曲線上且不與頂點重合,過F2作∠F1PF2的角平分線的垂線,垂足為A.若|OA|=b,則該雙曲線的離心率為( 。
A.$\frac{{\sqrt{5}+1}}{2}$B.$\sqrt{3}$C.$\sqrt{2}$D.$\sqrt{3}+1$

查看答案和解析>>

科目: 來源: 題型:選擇題

16.已知a=$[{\frac{1}{2},2}]$,b=0.56,c=log0.56,則a,b,c的大小關(guān)系為(  )
A.c<b<aB.c<a<bC.b<a<cD.b<c<a

查看答案和解析>>

科目: 來源: 題型:選擇題

15.過拋物線y2=2px(p>0)焦點的直線l與拋物線交于A、B兩點,以AB為直徑的圓的方程為(x-3)2+(y-2)2=16,則p=( 。
A.1B.2C.3D.4

查看答案和解析>>

科目: 來源: 題型:解答題

14.如圖,在四棱錐P-ABCD中,M,N分別是AB,PC的中點,若ABCD是平行四邊形.
(1)求證:MN∥平面PAD.
(2)若PA=AD=2a,MN與PA所成的角為30°.求MN的長.

查看答案和解析>>

同步練習冊答案