相關(guān)習(xí)題
 0  237152  237160  237166  237170  237176  237178  237182  237188  237190  237196  237202  237206  237208  237212  237218  237220  237226  237230  237232  237236  237238  237242  237244  237246  237247  237248  237250  237251  237252  237254  237256  237260  237262  237266  237268  237272  237278  237280  237286  237290  237292  237296  237302  237308  237310  237316  237320  237322  237328  237332  237338  237346  266669 

科目: 來(lái)源: 題型:解答題

14.已知f(x)=$\sqrt{3}$sin2x+sinxcosx-$\frac{\sqrt{3}}{2}$.
(Ⅰ)求f(x)的單調(diào)增區(qū)間;
(Ⅱ)在△ABC中,A為銳角且f(A)=$\frac{\sqrt{3}}{2}$,a=2,求△ABC周長(zhǎng)的最大值.

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

13.已知Sn為數(shù)列{an}的前n項(xiàng)和,對(duì)n∈N*都有Sn=1-an,若bn=log2an,則$\frac{1}{{{b_1}{b_2}}}$+$\frac{1}{{{b_2}{b_3}}}$+…+$\frac{1}{{{b_n}{b_{n+1}}}}$=$\frac{n}{n+1}$.

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

12.在區(qū)間[0,π]上隨機(jī)取一個(gè)x,則y=sinx的值在0到$\frac{1}{2}$之間的概率為( 。
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{π}$

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

11.設(shè)命題p:若y=f(x)的定義域?yàn)镽,且函數(shù)y=f(x-2)圖象關(guān)于點(diǎn)(2,0)對(duì)稱,則函數(shù)y=f(x)是奇函數(shù),命題q:?x≥0,x${\;}^{\frac{1}{2}}$≥x${\;}^{\frac{1}{3}}$,則下列命題中為真命題的是( 。
A.p∧qB.¬p∨qC.p∧¬qD.¬p∧¬q

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

10.在[0,π]內(nèi)任取一個(gè)實(shí)數(shù)x,則sinx≤$\frac{1}{2}$的概率為( 。
A.$\frac{2}{3}$B.$\frac{1}{2}$C.$\frac{1}{3}$D.$\frac{1}{4}$

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

9.某公司某件產(chǎn)品的定價(jià)x與銷量y之間的數(shù)據(jù)統(tǒng)計(jì)表如下,根據(jù)數(shù)據(jù),用最小二乘法得出y與x的線性回歸直線方程為:$\widehat{y}$=6.5$\widehat{x}$+17.5,則表格中n的值應(yīng)為(  )
 x 2 4
 y 30 4050 70 
A.45B.50C.55D.60

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

8.已知函數(shù)f(x)=(x-$\frac{3}{4}$)ex,g(x)=4x2-4x+mln(2x)(m∈R),g(x)存在兩個(gè)極值點(diǎn)x1,x2(x1<x2).
(1)求f(x1-x2)的最小值;
(2)若不等式g(x1)≥ax2恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

7.某公司有A,B,C,D,E五輛汽車,其中A、B兩輛汽車的車牌尾號(hào)均為1,C、D兩輛汽車的車牌尾號(hào)均為2,E車的車牌尾號(hào)為6,已知在非限行日,每輛車可能出車或不出車,A、B、E三輛汽車每天出車的概率均為$\frac{1}{2}$,C、D兩輛汽車每天出車的概率均為$\frac{2}{3}$,且五輛汽車是否出車相互獨(dú)立,該公司所在地區(qū)汽車限行規(guī)定如下:
車牌尾號(hào)0和51和62和73和84和9
限行日星期一星期二星期三星期四星期五
(1)求該公司在星期一至少有2輛汽車出車的概率;
(2)設(shè)X表示該公司在星期二和星期三兩天出車的車輛數(shù)之和,求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

6.如圖,在梯形ABCD中,AB∥CD,AD=DC=CB=2,∠ABC=60°,平面ACEF⊥平面ABCD,四邊形ACEF是菱形,∠CAF=60°.
(1)求證:BC⊥平面ACEF;
(2)求平面ABF與平面ADF所成銳二面角的余弦值.

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

5.若實(shí)數(shù)a,b,c,d滿足$\frac{2{a}^{2}-lna}$=$\frac{3c-2}r7lhbhv$=1,則(a-c)2+(b-d)2的最小值為$\frac{1}{10}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案