相關(guān)習(xí)題
 0  237713  237721  237727  237731  237737  237739  237743  237749  237751  237757  237763  237767  237769  237773  237779  237781  237787  237791  237793  237797  237799  237803  237805  237807  237808  237809  237811  237812  237813  237815  237817  237821  237823  237827  237829  237833  237839  237841  237847  237851  237853  237857  237863  237869  237871  237877  237881  237883  237889  237893  237899  237907  266669 

科目: 來源: 題型:選擇題

15.給出下列幾個命題:
①命題p:任意x∈R,都有cosx≤1,則“非p”:存在x0∈R,使得cosx0≤1.
②命題“若a>2且b>2,則a+b>4且ab>4”的否命題為假命題.
③空間任意一點O和不共線的三點A、B、C,若$\overrightarrow{OP}$=2$\overrightarrow{OA}$-$\overrightarrow{OB}$+$\overrightarrow{OC}$,則P、A、B、C四點共面.
④線性回歸方程y=bx+a對應(yīng)的直線一定經(jīng)過其樣本數(shù)據(jù)點(x1,y1)、(x2,y2)、…,(xn,yn)中的一個.其中不正確的個數(shù)為(  )
A.1B.2C.3D.4

查看答案和解析>>

科目: 來源: 題型:選擇題

14.已知雙曲線$\frac{y^2}{a}-\frac{x^2}{4}=1$的漸近線方程為$y=±\frac{{\sqrt{3}}}{2}x$,則此雙曲線的離心率為( 。
A.$\frac{{\sqrt{7}}}{2}$B.$\frac{{\sqrt{13}}}{3}$C.$\frac{{\sqrt{21}}}{3}$D.$\frac{5}{3}$

查看答案和解析>>

科目: 來源: 題型:選擇題

13.如圖,一個空間幾何體正視圖與左視圖為全等的等邊三角形,俯視圖為一個半徑為1的圓及其圓心,那么這個幾何體的表面積為( 。
A.πB.C.D.$π+\sqrt{3}$

查看答案和解析>>

科目: 來源: 題型:解答題

12.已知△ABC中,AD是BC邊上的中線,且cos∠BAC=$\frac{4}{5}$,cosC=$\frac{5}{13}$,BC=26.
(1)求AB的長;      
(2)求cosB;      
(3)求AD的長.

查看答案和解析>>

科目: 來源: 題型:解答題

11.已知向量${\overrightarrow m_1}$=(0,x),${\overrightarrow n_1}$=(1,1),${\overrightarrow m_2}$=(x,0),${\overrightarrow n_2}$=(y2,1)(其中x,y是實數(shù)),又設(shè)向量$\overrightarrow m$=${\overrightarrow m_1}$+$\sqrt{2}$${\overrightarrow n_2}$,$\overrightarrow n$=${\overrightarrow m_2}$-$\sqrt{2}$${\overrightarrow n_1}$,且$\overrightarrow m$∥$\overrightarrow n$,點P(x,y)的軌跡為曲線C.
(Ⅰ)求曲線C的方程;
(Ⅱ)設(shè)直線l:y=kx+1與曲線C交于M、N兩點,當(dāng)|MN|=$\frac{{4\sqrt{2}}}{3}$時,求直線l的方程.

查看答案和解析>>

科目: 來源: 題型:填空題

10.如圖,已知$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow$,任意點M關(guān)于點A的對稱點為S,點S關(guān)于點B的對稱點為N,則向量$\overrightarrow{MN}$=2$\overrightarrow$-2$\overrightarrow{a}$(用$\overrightarrow{a}$,$\overrightarrow$表示向量$\overrightarrow{MN}$)

查看答案和解析>>

科目: 來源: 題型:選擇題

9.設(shè)F1,F(xiàn)2分別是橢圓:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點,過F1傾斜角為45°的直線l與該橢圓相交于P,Q兩點,且|PQ|=$\frac{4}{3}$a.則該橢圓的離心率為( 。
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{1}{3}$

查看答案和解析>>

科目: 來源: 題型:解答題

8.已知函數(shù)f(x)=sin4ωx-cos4ωx+2sinωxcosωx(ω>0),點M,N是f(x)圖象的兩個相鄰的對稱中心,點H是f(x)圖象的一個最高點,三角形MNH的面積為$\frac{\sqrt{2}π}{4}$.
(1)求ω的值以及函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)銳角三角形ABC,邊c=2,所對角C滿足f(C)=1,求其面積S的取值范圍.

查看答案和解析>>

科目: 來源: 題型:填空題

7.已知SA、SB、SC兩兩所成的角為60°,則平面SAB與平面SAC所成二面角的余弦值為$\frac{1}{3}$.

查看答案和解析>>

科目: 來源: 題型:解答題

6.已知在四棱錐P-ABCD中,底面ABCD是直角梯形,∠BAD=90°,2AB=2AD=CD,側(cè)面PAD是正三角形且垂直于底面ABCD,E是PC的中點.
(1)求證:BE⊥平面PCD;
(2)在PB上是否存在一點F,使AF∥平面BDE?

查看答案和解析>>

同步練習(xí)冊答案