相關(guān)習(xí)題
 0  237827  237835  237841  237845  237851  237853  237857  237863  237865  237871  237877  237881  237883  237887  237893  237895  237901  237905  237907  237911  237913  237917  237919  237921  237922  237923  237925  237926  237927  237929  237931  237935  237937  237941  237943  237947  237953  237955  237961  237965  237967  237971  237977  237983  237985  237991  237995  237997  238003  238007  238013  238021  266669 

科目: 來源: 題型:填空題

10.在△ABC中,AB=7,BC=5,CA=6,則$\overrightarrow{AB}$•$\overrightarrow{BC}$=-19.

查看答案和解析>>

科目: 來源: 題型:解答題

9.已知函數(shù)f(x)=ln(1+x),x∈[0,+∞),f'(x)是f(x)的導(dǎo)函數(shù).設(shè)g(x)=f(x)-axf'(x)(a為常數(shù)),求函數(shù)g(x)在[0,+∞)上的最小值.

查看答案和解析>>

科目: 來源: 題型:選擇題

8.已知實數(shù)x,y滿足$\left\{\begin{array}{l}{y≥\frac{1}{2}x}\\{x≤7}\\{2x-y≥4}\end{array}\right.$,則z=2x-3y的最小值為( 。
A.-32B.-16C.-10D.-6

查看答案和解析>>

科目: 來源: 題型:填空題

7.已知奇函數(shù)f(x)的定義域為R,且f(x+$\frac{7}{2}$)=$\frac{1}{f(x)}$,f(4)>1,f(2012)=$\frac{2a+3}{a-1}$,則實數(shù)a的取值范圍是-$\frac{2}{3}$<a<1.

查看答案和解析>>

科目: 來源: 題型:填空題

6.已知實數(shù)x,y滿足約束條件$\left\{\begin{array}{l}{2x-y-1≤0}\\{x-y+1≥0}\\{x≥0,y≥0}\end{array}\right.$,則z=2x+3y點的最大值是13.

查看答案和解析>>

科目: 來源: 題型:解答題

5.在平面直角坐標(biāo)系xoy中,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=1-\frac{\sqrt{3}}{2}t}\\{y=\frac{1}{2}t}\end{array}\right.$(t為參數(shù)),在以原點O為極點,x軸正半軸為極軸的極坐標(biāo)系中,圓C的方程為ρ=2$\sqrt{3}$sinθ.
(1)寫出直線l的普通方程和圓C的直角坐標(biāo)方程;
(2)若點P的直角坐標(biāo)為(1,0),圓C與直線l交于A、B兩點,求|PA|+|PB|的值.

查看答案和解析>>

科目: 來源: 題型:解答題

4.已知命題p:方程$\frac{{x}^{2}}{m}$+$\frac{{y}^{2}}{6-m}$=1表示焦點在x軸上的橢圓;命題q:雙曲線$\frac{{y}^{2}}{5}$-$\frac{{x}^{2}}{m}$=1的離心率e∈($\frac{\sqrt{6}}{2}$,$\sqrt{2}$).若命題“p∨q”為真命題,“p∧q”為假命題,求m的取值范圍.

查看答案和解析>>

科目: 來源: 題型:選擇題

3.函數(shù)y=sin2x+cos2x如何平移可以得到函數(shù)y=sin2x-cos2x圖象( 。
A.向左平移$\frac{π}{2}$B.向右平移$\frac{π}{2}$C.向左平移$\frac{π}{4}$D.向右平移$\frac{π}{4}$

查看答案和解析>>

科目: 來源: 題型:選擇題

2.已知橢圓$C:\frac{x^2}{12}+\frac{y^2}{3}=1$,直線l與橢圓C交于A,B兩點,且線段AB的中點為M(-2,1),則直線l的斜率為( 。
A.$\frac{1}{3}$B.$\frac{3}{2}$C.$\frac{1}{2}$D.1

查看答案和解析>>

科目: 來源: 題型:解答題

1.已知數(shù)列{an}的前n項和為Sn,若4Sn=(2n-1)an+1+1,a1=1.
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{bn}滿足$\frac{_{n}}{{a}_{n}}$=($\sqrt{2}$)${\;}^{1+{a}_{n}}$,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

同步練習(xí)冊答案