相關習題
 0  237837  237845  237851  237855  237861  237863  237867  237873  237875  237881  237887  237891  237893  237897  237903  237905  237911  237915  237917  237921  237923  237927  237929  237931  237932  237933  237935  237936  237937  237939  237941  237945  237947  237951  237953  237957  237963  237965  237971  237975  237977  237981  237987  237993  237995  238001  238005  238007  238013  238017  238023  238031  266669 

科目: 來源: 題型:解答題

10.為了了解高血壓是否與常喝酒有關,現(xiàn)對30名成年人進行了問卷調查得到如下列聯(lián)表:
常喝不常喝合計
正常血壓4812
高血壓16218
合計201030
已知在全部30人中隨機抽取1人,抽到正常血壓成年人的概率為$\frac{2}{5}$.
(1)請將上面的列聯(lián)表補充完整;
(2)是否有99%的把握認為高血壓與常喝酒有關?說明理由;
(3)4名調查人員隨機分成兩組,每組2人,一組負責問卷調查,另一組負責數(shù)據(jù)處理,求工作人員甲分到負責收集數(shù)據(jù)組,工作人員乙分到負責數(shù)據(jù)處理組的概率.
參考數(shù)據(jù):
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(參考公式:K2=$\frac{{n(ad-bc)}^{2}}{(a+b)(c+d)(a+c)(b+d)}$)

查看答案和解析>>

科目: 來源: 題型:填空題

9.設x,y滿足約束條件$\left\{\begin{array}{l}{x+1≥0}\\{x+y≤1}\\{x-y≤1}\end{array}\right.$,則目標函數(shù)z=$\frac{y-3}{x}$的取值范圍是(-∞,-3]∪[1,+∞).

查看答案和解析>>

科目: 來源: 題型:填空題

8.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的離心率為2,C的焦點到其漸近線的距離是$\sqrt{3}$,則雙曲線C的方程為x2-$\frac{{y}^{2}}{3}$=1.

查看答案和解析>>

科目: 來源: 題型:填空題

7.已知f(x)=x3+asinx+b為奇函數(shù)(a,b為常數(shù))且f($\frac{π}{2}$)=$\frac{{π}^{3}}{8}$+1,則a=1.

查看答案和解析>>

科目: 來源: 題型:選擇題

6.執(zhí)行如圖所示的程序框圖,則輸出S=( 。
A.4B.log215C.log217D.3

查看答案和解析>>

科目: 來源: 題型:選擇題

5.向量$\overrightarrow{a}$=(1,0),$\overrightarrow$=(2,1),則($\overrightarrow{a}$+$\overrightarrow$)•($\overrightarrow$-2$\overrightarrow{a}$)=( 。
A.-2B.-1C.1D.0

查看答案和解析>>

科目: 來源: 題型:選擇題

4.已知$\frac{1+i}{2-i}$=a+bi(a、b∈R,i為虛數(shù)單位),則a2+b2=(  )
A.$\frac{2}{5}$B.$\frac{\sqrt{10}}{5}$C.$\frac{1}{5}$D.1

查看答案和解析>>

科目: 來源: 題型:選擇題

3.已知集合A={-3,-2,-1,0,1,2,3},B={y|y=2x,x∈R},則A∩(∁RB)=( 。
A.{0,1,2,3}B.{1,2,3}C.{-3,-2,-1,0}D.{-3,-2,-1}

查看答案和解析>>

科目: 來源: 題型:填空題

2.正方體ABCD-A1B1C1D1中,與AC成異面直線且夾角為45°棱的條數(shù)為4.

查看答案和解析>>

科目: 來源: 題型:解答題

1.(1)已知tanα=-$\frac{4}{3}$,且α為第四象限角,求sinα,cosα;
(2)計算sin$\frac{25π}{6}+cos\frac{26π}{3}+tan({-\frac{25π}{4}})$.

查看答案和解析>>

同步練習冊答案