相關習題
 0  238020  238028  238034  238038  238044  238046  238050  238056  238058  238064  238070  238074  238076  238080  238086  238088  238094  238098  238100  238104  238106  238110  238112  238114  238115  238116  238118  238119  238120  238122  238124  238128  238130  238134  238136  238140  238146  238148  238154  238158  238160  238164  238170  238176  238178  238184  238188  238190  238196  238200  238206  238214  266669 

科目: 來源: 題型:解答題

9.已知三棱錐S-ABC,底面△ABC為邊長為2的正三角形,側棱SA=SC=$\sqrt{2}$,SB=2
(1)求證:AC⊥SB;
(2)A點到平面SBC的距離.

查看答案和解析>>

科目: 來源: 題型:填空題

8.已知變量x,y滿足約束條件$\left\{\begin{array}{l}x-y-1≤0\\ 2x-y-3≥0\end{array}\right.$,若目標函數(shù)z=ax+2by(a>0,b>0)在該約束條件下的最小值為2,則$\frac{1}{a}+\frac{4}$的最小值為9.

查看答案和解析>>

科目: 來源: 題型:解答題

7.為迎接春節(jié),某工廠大批生產(chǎn)小孩玩具--拼圖,工廠為了規(guī)定工時定額,需要確定加工拼圖所花費的時間,為此進行了5次試驗,測得的數(shù)據(jù)如下:
拼圖數(shù)x/個1020304050
加工時間y/分鐘6268758189
(1)畫出散點圖,并判斷y與x是否具有相關關系;
(2)求回歸方程;
(3)根據(jù)求出的回歸方程,預測加工2 00個拼圖需用多少分鐘.

查看答案和解析>>

科目: 來源: 題型:解答題

6.為繪制海底地貌圖,測量海底兩點C,D間的距離,海底探測儀沿水平方向在A,B兩點進行測量,A,B,C,D在同一個鉛垂平面內.海底探測儀測得∠BAC=30°,∠DAC=45°,∠ABD=45°,∠DBC=75°,同時測得$AB=\sqrt{3}$海里.
(1)求AD的長度;
(2)求C,D之間的距離.

查看答案和解析>>

科目: 來源: 題型:選擇題

5.歐陽修在《賣油翁》中寫到:“(翁)乃取一葫蘆置于地,以錢覆其口,徐以杓酌油瀝之,自錢孔入,而錢不濕”,可見賣油翁的技藝之高超,若銅錢直徑為20mm,中間有邊長為5mm的正方形小孔,隨機向銅錢上滴一滴油(油滴大小忽略不計),則油恰好落入孔中的概率是( 。
A.$\frac{1}{4π}$B.$\frac{1}{2π}$C.$\frac{1}{π}$D.$\frac{2}{π}$

查看答案和解析>>

科目: 來源: 題型:選擇題

4.已知復數(shù)z=$\frac{1-2i}{2+i}$,其中i為虛數(shù)單位,則復數(shù)z的虛部為( 。
A.-1B.1C.-iD.i

查看答案和解析>>

科目: 來源: 題型:選擇題

3.若集合A={-1,0,1,2,3},B={x|x2-2x-3<0},則A∩B等于( 。
A.{-1,0}B.{-1,0,1,2}C.{0,1,2,3}D.{0,1,2}

查看答案和解析>>

科目: 來源: 題型:選擇題

2.設函數(shù)f(x)=sin(2x+$\frac{π}{3}$),則下列結論正確的是( 。
A.f(x)的圖象關于直線x=$\frac{π}{3}$對稱
B.f(x)的圖象關于點($\frac{π}{4}$,0)對稱
C.把f(x)的圖象向左平移$\frac{π}{12}$個單位長度,得到一個偶函數(shù)的圖象
D.f(x)的最小正周期為π,且在[0,$\frac{π}{6}$]上為增函數(shù)

查看答案和解析>>

科目: 來源: 題型:填空題

1.已知等比數(shù)列{an}的前n項和為Sn,2an+2an+2+5Sn=5Sn+1,且a1=q>1,數(shù)列{bn}滿足$\frac{_{n}}{{a}_{n}}$=|sin$\frac{(n+1)π}{2}$|.,若數(shù)列{bn}的前m項和為340,則m的值為8或9.

查看答案和解析>>

科目: 來源: 題型:選擇題

20.已知函數(shù)f(x)=$\sqrt{2}sinωxcosωx+\sqrt{2}{cos^2}ωx-\frac{{\sqrt{2}}}{2}({ω>0})$,若函數(shù)f(x)在$({\frac{π}{2},π})$上單調遞減,則實數(shù)ω的取值范圍是( 。
A.$[{\frac{1}{4},\frac{5}{8}}]$B.$[{\frac{1}{2},\frac{5}{4}}]$C.$({0,\frac{1}{2}}]$D.$({0,\frac{1}{4}}]$

查看答案和解析>>

同步練習冊答案