相關(guān)習(xí)題
 0  238691  238699  238705  238709  238715  238717  238721  238727  238729  238735  238741  238745  238747  238751  238757  238759  238765  238769  238771  238775  238777  238781  238783  238785  238786  238787  238789  238790  238791  238793  238795  238799  238801  238805  238807  238811  238817  238819  238825  238829  238831  238835  238841  238847  238849  238855  238859  238861  238867  238871  238877  238885  266669 

科目: 來(lái)源: 題型:選擇題

5.已知集合A={0,2,4,6},B={x∈N+|2x≤33},則集合A∩B的子集的個(gè)數(shù)為(  )
A.6B.7C.8D.4

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

4.已知函數(shù)f(x)=x2-(2t+1)x+tlnx(t∈R)
(1)若t=1,求f(x)的極值;
(2)設(shè)函數(shù)g(x)=(1-t)x,若?x0∈[1,e],使得f(x0)≥g(x0)成立,求實(shí)數(shù)t的最大值.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

3.已知角θ的終邊在射線y=2x(x≥0)上.
(1)求tanθ的值;
(2)求$\frac{2cosθ+3sinθ}{cosθ-3sinθ}+sinθcosθ$的值.

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

2.已知$sin(-α)=\frac{{\sqrt{5}}}{3}$,則$cos(\frac{π}{2}+α)$的值為( 。
A.$\frac{2}{3}$B.$-\frac{2}{3}$C.$\frac{{\sqrt{5}}}{3}$D.$-\frac{{\sqrt{5}}}{3}$

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

1.巴西醫(yī)生馬廷恩收集犯有各種貪污、受賄罪的官員與廉潔官員壽命的調(diào)查資料:500名貪官中有340人的壽命小于平均壽命,160人的壽命大于或等于平均壽命;590名廉潔官員中有90人的壽命小于平均壽命,500人的壽命大于或等于平均壽命.這里,平均壽命是指“當(dāng)?shù)厝司鶋勖保?nbsp;根據(jù)以上數(shù)據(jù)列2×2列聯(lián)表,并用獨(dú)立性檢驗(yàn)的方法判斷能否在犯錯(cuò)誤的概率不超過(guò)0.01的前提下認(rèn)為官員在經(jīng)濟(jì)上是否清廉與他們壽命的長(zhǎng)短之間有關(guān)系?

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

20.已知{bn}為等比數(shù)列,b5=2,則b1b2b3…b9=29.若{an}為等差數(shù)列,a5=2,則{an}的類(lèi)似結(jié)論為a1+a2+a3+…+a9=2×9.

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

19.已知x1>0,x1≠1且xn+1=$\frac{{{x_n}(x_n^2+3)}}{3x_n^2+1}$(n=1,2,…).試證:“在數(shù)列{xn}中,對(duì)任意正整數(shù)n都滿足xn<xn+1”,當(dāng)此題用反證法證明,否定結(jié)論時(shí),應(yīng)為( 。
A.對(duì)任意的正整數(shù)n,有xn=xn+1B.存在正整數(shù)n,使xn=xn+1
C.存在正整數(shù)n,使xn≥xn+1D.存在正整數(shù)n,使xn-xn-1≥0

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

18.已知整數(shù)對(duì)的序列為(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),(1,5),(2,4),…,則第57個(gè)數(shù)對(duì)是( 。
A.(2,10)B.(10,2)C.(3,5)D.(5,3)

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

17.(1)化簡(jiǎn):$\frac{{cos(θ+π)×{{sin}^2}(θ+3π)}}{{tan(θ+4π)×tan(π+θ)×{{cos}^3}(-π-θ)}}$
(2)求值:$\frac{{\sqrt{1-2sin{{10}°}cos{{10}°}}}}{{cos{{10}°}-\sqrt{1-{{cos}^2}{{170}°}}}}$.

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

16.函數(shù)$f(x)=\frac{1}{x^2}+2x(x>0)$的最小值為(  )
A.3B.4C.5D.6

查看答案和解析>>

同步練習(xí)冊(cè)答案