相關習題
 0  238692  238700  238706  238710  238716  238718  238722  238728  238730  238736  238742  238746  238748  238752  238758  238760  238766  238770  238772  238776  238778  238782  238784  238786  238787  238788  238790  238791  238792  238794  238796  238800  238802  238806  238808  238812  238818  238820  238826  238830  238832  238836  238842  238848  238850  238856  238860  238862  238868  238872  238878  238886  266669 

科目: 來源: 題型:選擇題

15.如圖所示,在△ABC中,點D、E、F分別是邊AB、BC、AC的中點,則下面結(jié)論正確的是(  )
A.$\overrightarrow{AE}=\overrightarrow{AD}+\overrightarrow{FA}$B.$\overrightarrow{DE}+\overrightarrow{AF}=0$C.$\overrightarrow{AB}+\overrightarrow{BC}+\overrightarrow{CA}≠0$D.$\overrightarrow{DE}-\overrightarrow{DF}=\overrightarrow{AD}$

查看答案和解析>>

科目: 來源: 題型:選擇題

14.給出下列命題:①向量$\overrightarrow{AB}$與$\overrightarrow{BA}$是相等向量;②共線的單位向量是相等向量;③模為零的向量與任一向量共線;④兩平行向量所在直線互相平行.其中不正確的是( 。
A.①②③B.②③④C.①②④D.①②③④

查看答案和解析>>

科目: 來源: 題型:填空題

13.在空間直角坐標系Oxyz中,已知A(1,-2,3),B(2,1,-1),若直線AB交平面yoz于點C,則點C的坐標為(0,-5,-5).

查看答案和解析>>

科目: 來源: 題型:解答題

12.已知函數(shù)$f(x)=\frac{1}{2}{x^2}-3x+(a-1)lnx$,g(x)=ax,h(x)=f(x)-g(x)+3x,其中a∈R且a>1.
(1)當a=3時,求函數(shù)h(x)的單調(diào)區(qū)間及極值;
(2)若對任意的x1,x2∈(0,+∞),x1≠x2,函數(shù)h(x)滿足$\frac{{h({x_1})-h({x_2})}}{{{x_1}-{x_2}}}>-1$,求實數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:填空題

11.用數(shù)學歸納法證明等式1+2+3+…+(2n+1)=(n+1)(2n+1)時,當n=1時左邊表達式是,從k→k+1需要添的項是(2k+2)+(2k+3).

查看答案和解析>>

科目: 來源: 題型:選擇題

10.函數(shù)f(x)=lnx-x的單調(diào)增區(qū)間為( 。
A.(1,+∞)B.(0,1)C.(-∞,1)D.(0,+∞)

查看答案和解析>>

科目: 來源: 題型:解答題

9.已知函數(shù)f(x)=x2-(2a+1)x+alnx,a∈R
(1)若函數(shù)f(x)在(1,f(1))處的切線垂直于y軸,求實數(shù)a的值;
(2)試討論函數(shù)f(x)的單調(diào)區(qū)間;
(3)若x>1時,f(x)>0恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:填空題

8.實數(shù)x,y滿足$\left\{\begin{array}{l}x+y≥1\\ x-y≥-1\\ 2x-y≤2\end{array}\right.$則z=4x+3y的最大值為24.

查看答案和解析>>

科目: 來源: 題型:解答題

7.在直角坐標系xOy中,直線點參數(shù)方程為$\left\{\begin{array}{l}x=-1-tcosα\\ y=tsinα\end{array}\right.(t$為參數(shù)$α∈(0,\frac{π}{2})$)以原點O為極點,x軸非負半軸為極軸建立坐標系,曲線C的極坐標方程為ρ=4cosθ.
(1)若直線l與曲線C有且一個公共點M,求點M的直角坐標;
(2)若直線l與曲線C相交于A、B兩點,線段AB的中點橫坐標為$\frac{1}{2}$,求直線l的普通方程.

查看答案和解析>>

科目: 來源: 題型:解答題

6.如圖,在各棱長為2的三棱柱ABC-A1B1C1中,側(cè)面A1ACC1⊥底面ABC,∠A1AC=60°.
(1)求三棱柱ABC-A1B1C1的體積;
(2)已知點D是平面ABC內(nèi)一點,且四邊形ABCD為平行四邊形,在直線AA1上是否存在點P,使DP∥平面AB1C?若存在,請確定點P的位置,若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案