相關(guān)習(xí)題
 0  239394  239402  239408  239412  239418  239420  239424  239430  239432  239438  239444  239448  239450  239454  239460  239462  239468  239472  239474  239478  239480  239484  239486  239488  239489  239490  239492  239493  239494  239496  239498  239502  239504  239508  239510  239514  239520  239522  239528  239532  239534  239538  239544  239550  239552  239558  239562  239564  239570  239574  239580  239588  266669 

科目: 來(lái)源: 題型:填空題

9.${(x-\frac{2}{{\sqrt{x}}})^n}$的二項(xiàng)展開(kāi)式中第五項(xiàng)和第六項(xiàng)的二項(xiàng)式系數(shù)最大,則各項(xiàng)的系數(shù)和為-1.

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

8.已知P是橢圓$\frac{x^2}{25}+\frac{y^2}{9}=1$上任意一點(diǎn),過(guò)橢圓的右頂點(diǎn)A和上頂點(diǎn)B分別作x軸和y軸的垂線,兩垂線交于點(diǎn)C,過(guò)P作AC,BC的平行線交BC于點(diǎn)M,交AC于點(diǎn)N,交AB于點(diǎn)D,E,矩形PMCN的面積是S1,三角形PDE的面積是S2,則$\frac{{2{S_1}}}{S_2}$=(  )
A.2B.1C.$\frac{8}{3}$D.$\frac{8}{5}$

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

7.點(diǎn)(1,1)在不等式組$\left\{{\begin{array}{l}{my≥1}\\{mx+ny≤2}\\{ny-mx≤2}\end{array}}\right.$表示的平面區(qū)域內(nèi),則m2+n2+1的取值范圍是( 。
A.[4,+∞)B.[2,4]C.[2,+∞)D.[1,3]

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

6.已知集合$A=\left\{{x∈Z\left|{\frac{x+1}{x-3}≤0}\right.}\right\}$,B={y|y=x2+1,x∈A},則集合B的含有元素1的子集個(gè)數(shù)為( 。
A.5B.8C.4D.2

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

5.?dāng)?shù)學(xué)上稱函數(shù)y=kx+b(k,b∈R,k≠0)為線性函數(shù).對(duì)于非線性可導(dǎo)函數(shù)f(x),在點(diǎn)x0附近一點(diǎn)x的函數(shù)值f(x),可以用如下方法求其近似代替值:f(x)≈f(x0)+f'(x0)(x-x0).利用這一方法,$m=\sqrt{4.001}$的近似代替值(  )
A.大于mB.小于m
C.等于mD.與m的大小關(guān)系無(wú)法確定

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

4.已知集合A={x|lnx≤0},B={x∈R|z=x+i,$|z|≥\frac{{\sqrt{5}}}{2}$,i是虛數(shù)單位},A∩B=( 。
A.$({-∞,-\frac{1}{2}}]∪[{\frac{1}{2},1}]$B.$[{\frac{1}{2},1}]$C.(0,1]D.[1,+∞)

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

3.已知函數(shù)f(x)=|2x-1|,x∈R.
(1)解不等式f(x)≥2-|x+1|;
(2)若對(duì)于x,y∈R,有$|{x-y-1}|≤\frac{1}{3}$,$|{2y+1}|≤\frac{1}{6}$,求證:f(x)<1.

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

2.北宋數(shù)學(xué)家沈括的主要數(shù)學(xué)成就之一為隙積術(shù),所謂隙積,即“積之有隙”者,如累棋、層壇之類,這種長(zhǎng)方臺(tái)形狀的物體垛積.設(shè)隙積共n層,上底由長(zhǎng)為a個(gè)物體,寬為b個(gè)物體組成,以下各層的長(zhǎng)、寬依次各增加一個(gè)物體,最下層成為長(zhǎng)為c個(gè)物體,寬為d個(gè)物體組成,沈括給出求隙積中物體總數(shù)的公式為S=$\frac{n}{6}[{({2b+d})a+({b+2d})c}]+\frac{n}{6}({c-a})$.已知由若干個(gè)相同小球粘黏組成的幾何體垛積的三視圖如圖所示,則該垛積中所有小球的個(gè)數(shù)為85.

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

1.設(shè)D為不等式組$\left\{{\begin{array}{l}{x+y≤1}\\{2x-y≥-1}\\{x-2y≤1}\end{array}}\right.$,表示的平面區(qū)域,點(diǎn)B(a,b)為第一象限內(nèi)一點(diǎn),若對(duì)于區(qū)域D內(nèi)的任一點(diǎn)A(x,y)都有$\overrightarrow{OA}•\overrightarrow{OB}≤1$成立,則a+b的最大值等于( 。
A.0B.1C.2D.3

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

20.設(shè)全集U=R,集合M={x|x>1},p={x|x2>1},則下列關(guān)系中正確的是( 。
A.M=PB.P?MC.M?PD.(∁UM)∩P=∅

查看答案和解析>>

同步練習(xí)冊(cè)答案