相關(guān)習(xí)題
 0  239777  239785  239791  239795  239801  239803  239807  239813  239815  239821  239827  239831  239833  239837  239843  239845  239851  239855  239857  239861  239863  239867  239869  239871  239872  239873  239875  239876  239877  239879  239881  239885  239887  239891  239893  239897  239903  239905  239911  239915  239917  239921  239927  239933  239935  239941  239945  239947  239953  239957  239963  239971  266669 

科目: 來源: 題型:填空題

8.在平面直角坐標(biāo)系xOy中,角θ的終邊經(jīng)過點P(x,1)(x≥1),則cosθ+sinθ的取值范圍是(1,$\sqrt{2}$].

查看答案和解析>>

科目: 來源: 題型:選擇題

7.為了解某社區(qū)居民購買水果和牛奶的年支出費用與購買食品的年支出費用的關(guān)系,隨機(jī)調(diào)查了該社區(qū)5戶家庭,得到如下統(tǒng)計數(shù)據(jù)表:
購買食品的年支出費用x(萬元)2.092.152.502.842.92
購買水果和牛奶的年支出費用y(萬元)1.251.301.501.701.75
根據(jù)上表可得回歸直線方程$\hat y=\hat bx+\hat a$,其中$\hat b=0.85,\hat a=\overline y-\hat b\overline x$,據(jù)此估計,該社區(qū)一戶購買食品的年支出費用為3.00萬元的家庭購買水果和牛奶的年支出費用約為(  )
A.1.79萬元B.2.55萬元C.1.91萬元D.1.94萬元

查看答案和解析>>

科目: 來源: 題型:填空題

6.已知數(shù)列{an}滿足${a_1}=-\frac{1}{2}$,an+1bn=bn+1an+bn,且${b_n}=\frac{{1+{{(-1)}^n}5}}{2}$(n∈N*),則數(shù)列{an}的前2n項和S2n取最大值時,n=8.

查看答案和解析>>

科目: 來源: 題型:選擇題

5.執(zhí)行如圖的程序框圖,如果輸入的a=6,b=4,那么輸出的s的值為( 。
A.17B.22C.18D.20

查看答案和解析>>

科目: 來源: 題型:選擇題

4.已知曲線C:y=sin(2x+φ)(|φ|<$\frac{π}{2}$)的一條對稱軸方程為x=$\frac{π}{6}$,曲線C向左平移θ(θ>0)個單位長度,得到的曲線E的一個對稱中心為($\frac{π}{6}$,0),則|φ-θ|的最小值是( 。
A.$\frac{π}{12}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{5π}{12}$

查看答案和解析>>

科目: 來源: 題型:選擇題

3.已知以O(shè)為中心的雙曲線C的一個焦點為F,P為C上一點,M為PF的中點,若△OMF為等腰直角三角形,則C的離心率等于( 。
A.$\sqrt{2}-1$B.$\sqrt{2}+1$C.$2+\sqrt{2}$D.$\frac{\sqrt{5}+1}{2}$

查看答案和解析>>

科目: 來源: 題型:填空題

2.設(shè)a>0,b>0,函數(shù)f(x)=xlnx,g(x)=-a+xlnb,且?x∈[$\frac{a+b}{4}$,$\frac{3a+b}{5}$],使得f(x)≤g(x),則$\frac{a}$的取值范圍是[e,7).

查看答案和解析>>

科目: 來源: 題型:解答題

1.極坐標(biāo)系中橢圓C的方程為ρ2=$\frac{2}{co{s}^{2}θ+2si{n}^{2}θ}$,以極點為原點,極軸為x軸非負(fù)半軸,建立平面直角坐標(biāo)系,且兩坐標(biāo)系取相同的單位長度.
(1)若橢圓上任一點坐標(biāo)為P(x,y),求${x^2}+\sqrt{2}xy$的取值范圍;
(2)若橢圓的兩條弦AB,CD交于點Q,且直線AB與CD的傾斜角互補,求證:|QA|•|QB|=|QC|•|QD|.

查看答案和解析>>

科目: 來源: 題型:選擇題

20.已知函數(shù)f(x)=$\frac{lnx}{x}$,關(guān)于x的不等式f2(x)+af(x)>0只有一個整數(shù)解,則實數(shù)a的取值范圍是( 。
A.(-$\frac{ln3}{3}$,-$\frac{ln2}{2}$]B.(-$\frac{1}{e}$,-$\frac{ln2}{2}$]C.[$\frac{ln2}{2}$,-$\frac{ln3}{3}$]D.[$\frac{ln2}{2}$,$\frac{1}{e}$)

查看答案和解析>>

科目: 來源: 題型:選擇題

19.已知變量x、y滿足約束條件$\left\{\begin{array}{l}{x+y-3≥0}\\{x-2y+3≥0}\\{x≤a}\end{array}\right.$,且z=x+2y的最小值為3,則$\frac{y}{x+1}$≥$\frac{1}{2}$的概率是( 。
A.$\frac{3}{4}$B.$\frac{3}{5}$C.$\frac{1}{2}$D.$\frac{5}{9}$

查看答案和解析>>

同步練習(xí)冊答案